

Probabilistic Resource Adequacy Methods Update from Recent EPRI Initiative ENERGY DELIVERY AND CUSTOMER SOLUTIONS

Aidan Tuohy, <u>atuohy@epri.com</u> Director, Transmission Operation and Planning

ESIG/G-PST Webinar Feb 26, 2024

 in
 X
 t

 www.epri.com
 © 2024 Electric Power Research Institute, Inc. All rights reserved.

Why is Resource Adequacy (RA) such a hot topic now?

NERC Long Term Reliability Assessment

- Elevated or high risk in many regions
- Winter fuel supply a major challenge
- Capacity reserves a challenges in some regions

Recent Events

- Winter storm Elliott (end 2022)
- Winter storm Uri (early 2021)
- Alberta (early 2024)

Source: NERC-FERC Winter Storm Elliott Report: Inquiry into Bulk-Power System Operations During December 2022 (link)

Why is RA important for a highly decarbonized system?

From EPRI LCRI Net-Zero 2050: U.S. Economy-Wide Deep Decarbonization Scenario Analysis (link)

Increased shares of variable renewables

- Energy storage, demand flexibility and thermal plant needed to balance periods of low wind/solar
- Transmission, T&D interaction and other energy system interactions will all impact needs

Example from Belgium:

Electrolysers and power-to-heat are an output of the economic dispatch model

Source: Adequacy studies (elia.be)

Increased reliance on electricity

- Often best way to decarbonize society's energy needs
- Increases in demand coming unseen in decades
- Energy growth in developing world needs to be clean

Ongoing evolution of methods....

Cloudy with a Chance of Blackouts or Full of Hot Air?

Evaluating Weather Events in Long-term Power System Planning and Resource Adequacy Analysis

G-PST/ESIG Webinar Series | June 21, 2023

Ensuring Energy Adequacy with Energy

EPRI Transmission Operations and Planning April 26, 2023

AMERICAN ELECTRIC DELLABILITY CORPORATION

Constrained Resources

NERC

December 2020 White Paper

Electricity Markets & Policy Energy Analysis & Environmental Impacts Division Lawrence Berkeley National Laboratory

A Guide for Improved Resource Adequacy **Assessments in Evolving Power Systems**

Institutional and technical dimensions

Juan Pablo Carvallo, Nan Zhang¹, Benjamin D. Leibowicz¹, Thomas Carr², Sunhee Baik, and Peter H. Larsen

¹University of Texas, Austin ²Western Interstate Energy Board (WIEB)

June 2023

MISO'S RESPONSE TO THE RELIABILITY IMPERATIVE

Living Document

This is a "living" report that is updated periodically as conditions evolve, and as MISO,

stakeholders and states continue to assess and respond to the Reliability Imperative.

UPDATED FEBRUARY 2024

new england ISO

Ensuring Efficient Reliability **NEW DESIGN PRINCIPLES** FOR CAPACITY ACCREDITATION

A Report of the Energy Systems Integration Group's Redefining Resource Adequacy Task Force February 2023

ESIG

OCTOBER 18, 2023 | EPRI RA FORUM

Modeling Enhancements to Support Resource Capacity Accreditation

EPRI RA Forum

Fei Zeng TECHNICAL MANAGER | PLANNING SERVICES

And Lots More.....

EPRI RA Initiative

Resource Adequacy Initiative

Scope and Deliverables

Previously shared with ESIG/G-PST in April 2023 (link)

EPRI

25+ Participants

Foundational Case Studies

Six case studies of future systems were carried out for different levels of renewables and storage to assess a range of key questions and study tool capabilities that are relevant for each region. These do not replace standard planning studies, but are a look at how resource adequacy issues may evolve across the continent.

EPRI

EPRI Resource Adequacy Decision Support Framework

The case studies, together with extensive review of other studies and consultation with industry stakeholders, provided the evidence base upon which a guideline and decision support framework was developed.

Strategic Guidance: Assessment Design Principles

Resource Adequacy Philosophy

Use this to:

- \rightarrow Review the purpose and scope of
- resource adequacy assessments
- → Leverage foundational principles in process design
- → Compare existing assessment processes to verify completeness

Scenario Selection Guidance

Use this to:

- → Identify the range of variables and factors that may influence the outcome of
- adequacy assessments
- \rightarrow Prioritize approach to considering each of
- ⁴ the variables within assessment processes

Covered in Other Webcasts

Metrics & Criteria Guidance

Use this to:

→ Review the metrics and criteria used to measure adequacy around the world

→ Understand how metrics are calculated and the differences in the risk conveyed by the metrics

Tactical Decision Support: Study Execution Decision Support

Focus Today

Technology & System Models

Use this to:

- → Review methods by which supply and demand technologies are represented in
- adequacy models
- → Determine appropriate level of detail that is recommended for each asset type

Resource Adequacy

Gap Assessment

Data Requirements

Use this to:

- ightarrow Review recommended data sources,

parameterize models

→ Determine appropriate level of detail that is recommended for each variable

variables, extent and quality required to

Assessment Tool Capabilities

Use this to:

→ Review the analysis capabilities of commonly applied resource adequacy assessment tools

- \rightarrow Compare the approaches applied within
- Q1 '24
- each, in the context of the recommended model and data guidance

Use this to:

 (\mathbf{I})

 \rightarrow Understand the unmet challenges faced by resource adequacy stakeholders, with prioritization of next tasks.

Research

Gaps

Key Insights – Modeling

Resource Adequacy Guidelines

- Individual deliverables meant to be used in conjunction with one another:
 - Reference of model options by technology type
 - Data guidelines

 Across all reports, outline "level I – level II – level III" functionalities for each subcategory, as well as key outstanding gaps

Modeling	Level I	Level II	Level III
Data, Model or	Most basic model: may be sufficient when	Mid-fidelity models: may employ	Highest fidelity models: these models
Tool Characteristic	reliance on technology addressed is low	advanced modeling techniques for certain aspects of a technology and basic ones for others	will systematically capture technology behavior with the highest level of accuracy compared to Levels I and II

Examples: Modeling options by level of fidelity

		Level I	Level II	Level III	
	Capacity limits	Maximum generating or contractually declared capacity.	Seasonally adjusted capacity rating or declared capacity for dispatch.	Condition-based capacity rating.	
NERATION	Maintenance modeling	Heuristic maintenance schedules.	Optimized maintenance schedules for long-term assessments. Forecasted maintenance schedules for short or near- term assessments.	Optimized (long-term) or forecasted (short or near-term) maintenance schedules with provisions for delays and recall.	
RMAL GEN	Forced outage modeling	Monte Carlo Markov Chain hourly simulation with seasonally adjusted forced outage rates.	Monte Carlo Markov Chain hourly simulation model with daily condition-based failure rates.	Monte Carlo Markov Chain hourly simulation model incorporating weather dependent/condition-based failure rates by interval.	
Ξ	Failure to start	Not included.	Start failure.	Condition-based start failure.	
	Energy limits	No model.	Fuel Pool.	Hourly fuel offtake limit and fuel pool.	
	Flexibility constraints	None.	Minimum generation, minimum up/ down time.	Advanced constraints plus start up, ramp rate.	

		Level I	Level II	Level III		
	Network model	Copper sheet.	Zonal.	Flow based zonal or nodal, if relevant.		
	Network outages	Not applicable.	May model network outages.	Models network outages.		
	Transmission line limits	Not applicable.	Models fixed transmission line limits. May recognize joint import limits.	Models time-varying transmission line limits and joint import limits.		

Storage Modeling

All six case studies investigated multiple future capacity buildouts with varying levels of renewables and storage to assess the impact of the changing resource mix on system adequacy. Additionally, several case studies ran additional sensitivities to better understand the impact of storage modeling practices on results.

SPP case study

 Evaluated the impact of varying look-ahead periods on adequacy results.

Texas case study

- Evaluated the impact of storage scheduling options on adequacy results (for example, minimizing system cost versus minimizing adequacy shortfalls)
- Evaluated the impact of increasing storage duration on system adequacy.
- Tracked the variation in shortfall event causes as renewable and storage penetration increased (capacity limit vs. energy duration limit vs. energy charge limit)

Western US case study

- Evaluated the impact of short-duration vs. medium-duration vs. long-duration storage on system adequacy.
- Evaluated the impact of the following parameters on medium-duration storage modeling:
 - Periodic vs. linked simulations
 - Outage derates vs. stochastic outage replications
- Develop an iterative methodology for long-duration storage portfolio to ensure that the system doesn't discharge more than it charges during a given year.
- Evaluated the impact of the following parameters on long-duration storage modeling:
 - Start date
 - Optimization window
 - State-of-charge depletion penalty

SPP case study – Impact of look-ahead

Scenario	LOLH (hours/year)	LOLD or LOLE LOLP (days/year) (%/year)		LOLEv (events/year)	EUE (MWh/year)	NEUE (ppm/year)
80%_VRE (24h look-ahead)	0.15	0.098	0.03	0.11	98	0.33
80%_VRE (no look-ahead)	2.05	0.619	0.17	0.74	1010	3.40

LOLD by Season

With less foresight, heightened risks are expected both in summer and in winter

EPRI

Texas case study – Impact of storage scheduling options

- Energy limited storage minimises duration of shortfall by doing this

- Minimises maximum shortfall depth by doing this Source: Dent, et al.

Multiple objective functions considered in PLEXOS:

- Economic: minimize system cost (number of hours), (PLEXOS default – minimize cost, with high unserved energy cost)
- Min LOLEV: minimize the number of events
- First Come First Serve: immediately discharge at max output as soon as unserved energy starts and do not hold energy for later periods (likely reflects actual operations, absent market intervention)
- Min Shortfall: minimize the depth of the shortfalls (max load unserved for any given hour, potential market operator intervention)

	Econ	Min LOLEv	First Serve	Min Shortfall
LOLE (days/yr)	0.103	0.103	0.082	0.105
LOLH (hours/yr)	0.387	0.438	0.230	0.557
EUE (MWh/yr)	724.52	724.52	724.52	724.52
Avg Depth (GW)	2.2	2.0	3.9	1.4
Max Depth (GW)	6.3	6.3	9.0	4.3
Avg Duration (hrs)	2.8	3.3	2.8	5.8

Note: Min LOLEv optimization did not result in lower LOLE than alternative methods due to step size and optimization horizon, and different definitions of event classification (i.e. consecutive hours vs. days, etc.)

Different methods of dispatching batteries under scarcity conditions yield different results for LOLE but identical results for EUE

In an energy-constrained system, an energy metric (EUE) may be best suited for a new reliability criterion

Western US case study – Long-duration storage modeling

	Wind +	Battery	Generic	Multiday
	Solar	Storage	Thermal	Storage
Portfolio 6	240 GW	60 GW (8 hrs)	0 GW	43.2 GW (569 hrs)

Default settings:

- Optimization window: 1 week
- State of charge depletion penalty: \$100/MWh
- Simulation start date: Week 23 (June 4th) ٠

- Longer optimization windows (i.e., more foresight) reduces RA risk across all metrics.
- For 1-week optimization window, state of charge depletion penalty in the last time step had to be at least \$10/MWh to encourage the storage to adequately charge for future weeks.
- Beginning the simulation in June yields lower RA risk, aligns with more realistic operating practices, and reduced runtimes.

Optimization Window Tests

Simulation Start Date Tests

Optimization Window

How sensitive is the system to hydro and weather years?

EUE (MWh/year)

Portfolio 4 (high VRE and storage)

Portfolio 6 (high VRE, multi-day storage)

EUE (MWh/year)

	Weather year										Weather year																				
		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020			2007	200	8 2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	2001	3515													980		2001								5606			3.E+04			
	2002	2358													224		2002		r												
	2003	1404													29		2003	5.E+04													
	2004	1179													43		2004														
	2005	1123													7		2005														
	2006	890													9		2006														
	2007	2193													47		2007											632			
	2008	1811													35		2008											539			
ear	2009	3215													809	ear	2009											455			
o V	2010	1917													58	ν Σ	2010														
łyd	2011															łydi	2011														
<u> </u>	2012	32													3	÷	2012											1052			
	2013	2632										F			100		2013	1 5.05										1053			
	2014	3/50			4.4							5			1034		2014	1.E+05							1 5.04			2026			
	2015	2274			44							58			3342		2015								1.E+04			3.E+04			
	2010	1020										Z			1119		2010											223			
	2017	2121													120		2017														
	2010	1210													2		2010														
	2019	1716													2		2019											512			
	RA risk shifts to 2007 as the system incorporates more renewables and storage, potentially due to the August 2007 heat wave, which saw more cloud cover than the August 2020 event.							es h ^N R	Cha Neat	allen her r k is n	ging isk nuc	g yea arise ch mc	rs ar s in ore d	e les 2017 sur eper	s fre ', wh nme nden	que nich s r in t nt on	nt, bu saw b the W the c	it evo oth /est comb	ents a col oinat	are n ld wir	nuch iter a f wea	larg and a athe	er. a hot								
WE	WECC case study results									hyd	ro d	condi	tion	s beo	cause	e the	e syst	em i	s ene	ergy-l	imite	ed.									

Correlated Outage Modeling

Varying approaches to weather-dependent outage modeling were identified and applied across all case studies, depending on data availability, tool capability, and modeling choices.

Models

Many modeling choices:

- Model weather-dependent unavailability as a capacity derate vs. as a forced outage rate
- Recalibrate base forced outage rates vs. not
- Model the impact of natural gas unavailability and/or the impact of extreme temperatures on generating equipment
- Adjust time-to-outage values only or both time-to-outage and time-to-repair values
- Adjust full outage rates only or both full outage rates and partial outage rates

Data

Limited data availability:

- Create custom capacity derate information using historical GADS and temperature data
- Use data from CMU method (Murphy et al)
 - Either use as is, or shift based on location compared to PJM
- Assume all affected units are derated or offline past a certain temperature threshold
 - Affected units- consider plant vintage? Consider dual-fuel units?
 - Temperature threshold What temperature threshold to use? Daily or hourly? Averaged over what region?

Tools

Varying tool capabilities:

- Some tools allow for forced outage rates to be varied directly as a function of temperature.
- Some tools allow for forced outage rates to be varied temporally, but not as a function of temperature. Hourly forced outage rates can be created which reflect the temperature variation, but they will vary from one weather year to another, and results must be merged in postprocessing.
- Some tools don't allow for forced outage rates to be varied hourly or as a function of temperature, and workarounds must be used.

EPC

Texas case study - Weather Dependent Outages Increase LOLE Significantly 2030 Texas System

- Introducing WDO causes a significant increase in observed loss of load events, even when the *average* outage rate is the same
- This risk is not captured in many of today's resource adequacy analyses
 - Using unconditional, average outages rates dampens variability and may understate risk
 - Generation is highly susceptible to timing of increased outage risk, as observed with changing seasonality due to shifting the outage rate function 5° and 10°C
- However, this analysis does not consider:
 - Impacts of weatherization measures
 - Explicit natural gas pipeline and electric power sector coupling

NOTE: The "Unconditional Outage Model" uses a higher annual outage rate such that the *average* outage rate between the unconditional outage model and the weather dependent outage models are consistent. than the Base Case of the ERCOT Case Study

1

Data Deliverable – Topics Covered and Aims

Reference document for the current state of tool functionality across several resource adequacy assessment tools.

Guide tool users towards the most appropriate tool for the study at hand, and help tool developers better understand how their tool's functionality compares to others in the industry.

EPRI

Data Guidelines: Examples of Summary Tables

		Level I	Level II	Level III		
GENERATION	DER facilities, generation data	Aggregate capacity of DER generation and storage facilities, sufficient to allow estimated generation and charge and discharge	Comprehensive facility location and technology data for generation and storage facilities, together with sampled data, allowing for more accurate estimation of generation, charge and discharge.	Telemetered generation, charge and discharge data for all DER facilities, whether at individual facility or nodal aggregation.		
	Wind Power	Five years of hourly data; speed to power transformation based on generic power curves; geographic diversity of generation captured at coarse resolution	Decades of hourly data (40+ years), validated speed-to-power conversion, benchmarked against real-world generation data representing current and near-future wind technologies	Level II with climate trends included; uncertainty modeled; new/future wind technology represented		
	Solar Power	Five years of hourly GHI data at 0.25-degree resolution, conversion to power based on generic power curves.	Decades of 5-minute data from in-situ instrumental observations of GHI/DNI, used to generate simulated hourly mean and generation time series as well as hourly statistics of 5-minute variability, conversion to power including tracking and inverter modeling.	Decades of 5-minute GHI/DNI from a combination of modeled and observed radiation, converted to generation using power curves and tracking algorithms particular to the modeled facility.		

Ð		Level I	Level II	Level III
smission tage Dat	Transmission Capacity and Transfer Data	None: transmission neglected in copper-plate model for resource adequacy, with fixed prescribed imports and exports to neighboring grids.	Transmission limits prescribed for zone-to- zone and grid-to-grid transmission, but variations within limits set according to modeled excess capacity in each zone.	Detailed model of transmission line ratings with weather inputs, nodal model of transmission within grid and between grid and neighboring grids.
Trans & Outo	Thermal Power (Gas, Gas+CCS, Biofuel, BECCS, Hydrogen) – Extreme	Extreme outages from 15+ years of forced outage historical data	Weather-dependent outages (WDO) generated using 30+ years of historical forced outage and temperature data	WDO and common cause outages generated using 50+ years of historical forced outage and temperature, coupled with predictive modeling of extreme weather events

Survey of Software Tools Deliverable Expected to be Published in March 2024

Tool Components Covered and Tools Surveyed

	Domand Side and		<u>Iools Surveyed for the project:</u>							
Core Functionality	Storage Resources	Networks	Tool Category	Tool Name	Tool Provider					
	storage nessarees			2-4-C	Ernst & Young (EY)					
				Aurora	Energy Exemplar					
				BID3	AFRY					
				Crystal Super Grid	Artelys					
Analysis		Transmission Network		Enelytix	Polaris Systems Optimization and Newton Energy Group					
American	Energy Storage		Commercial	GridView	Hitachi Energy					
Approaches			Commercial	MARS	General Electric					
				Plexos	Energy Exemplar					
			•	PowerSIMM	Ascend Analytics					
				PROMOD	Hitachi Energy					
				SDDP	PSR					
Risk Metrics	Hydropower			SERVM	Astrape					
				Antares	RTE International					
			Open source	GridPath	Blue Marble Analytics					
				PRAS	National Renewable Energy Laboratory (NREL)					
				MAVRIC	Western Electricity Coordinating Council (WECC)					
			Custom	RECAP	Energy + Environmental Economics (E3)					
Generator Outages	Demand Elevibility			GRARE	Centro Elettrotecnico Sperimentale Italiano (CESI)					
Generator Outages			18 5 16							
Weather Uncertainty			Dot line 14 12 12 12 12 12 12 12 12 12 12 12 12 12							
			Convolution N	on-chronological Heuristics-based Monte Carlo chronological Monte chr Carlo	Dispatch-based Pseudo-Chronological High-Level Monte Convolution ronological Monte Monte Carlo Carlo Methodology Using Carlo Monte Carlo-Derived Inputs					

Outage Modeling

Key Insights – Emerging Resource Modeling

Demand Side Resources:

Less flexible

- Defined for every day of the week or hour of day
- Defined for every month
- Defined by season

Energy Reservoir Modeling (Storage):

Dispatch objectives:

Considerations for Tool Selection

Other Factors to Consider Beyond Tool Specifications:

	Example use cases							
Tool selection factors	Research project	Yearly update project	Quick turnaround screening study					
Availability of detailed models	++	+++	+					
Cost	+++	++	+					
Computational speed	+	++	+++					
User interface	+	++	+++					
Software support	+	+++	++					
User manual	+++	++	+					
Access to nonproprietary databases	++	+	+++					

+ Low importance

++ Medium importance +++ High importance

Technical Study Considerations for Tool Selection:

If modeling a system	Then prioritize		
with a large amount of energy limited resources	 → dispatch-based chronological Monte Carlo sampling method (Section 3) → robust storage, hydropower and/or demand response modeling (Sections 8, 9, and 10) 		
at risk of extreme weather events	 → report percentile-based metrics (Section 4) → correlated timeseries data (weather-based resources, load, temperature, etc.) (Section 6) → conditions-based forced outage modeling (Section 5) → start-up failure modeling (Section 5) → contingency outages to represent widespread outages due to fuel shortages (Section 5) 		
in the operational planning timeframe	 chronological Monte Carlo sampling method (Section 3) multi-stage economic optimization (Section 3) no forced outage foresight (Sections 3 and 5) short-term weather forecast error (Section 6) 		
at risk of shoulder season shortfall events	➔ a robust maintenance outage modeling methodology (Section 5)		

What comes next?

EPRI initiative – Where can I find additional information?

Available today:

- Website is already live, with initial set of reference reports and all case study reports already linked.
- Will be adding material to this as it gets published.
- In-depth technical reports (2-3 still to come!)
 - Metrics and criteria recommendations
 - Survey of tool capabilities
 - Scenario generation guidelines
- Summary papers and videos

www.epri.com/resource-adequacy

operating condition

solutions benefiting society; and

diverse regions to guide employment of new processes.

Resource Adequacy Research

Resource Adequacy for a

A key capability of EPRI's Resource Adequacy

Decarbonized Future

Resource Adequacy for a Decarbonized Future: A., This report summarizes existing and proposed

Exploring the Impacts of Extreme Events, Natural Gas Fu. This white paper focuses on planning for

Gap Severity Rankings

LOW

[5] Incorporating consistent and correlated weather datasets

MODERATE

- [6] Need for improved and more detailed resource adequacy metrics
- [6] Interregional coordination
- [7] Holistic integration of resource adequacy with other planning activities
- [7] Improved load forecasting... weather impacts, electrification, and climate

SEVERE

- [9] Identification and analysis of outlier, high-impact, low-probability, events
- [9] Winter risk associated with fuel supply and weather dependent outages

Reflects need for further awareness, R&D and integration into RA studies

Resource Adequacy – Current Key Issues We Have a Good Handle On

 Additional metrics/ criteria needed to assess adequacy risk

Region	Daily LOLE	Hourly LOLE	EUE-norm.
А	0.10	0.15	0.37
В	0.10	0.34	0.99
С	0.10	0.39	3.37
D	0.10	0.25	1.00
Е	0.10	0.48	2.54
F	0.10	0.28	0.34
Metric Scope	Frequency	+ Duration	+ Magnitude
Relative Risk	Same	3X	10X

Multiple metrics may be needed; more work to set criteria Need to consider range of operational conditions and resource behavior

Weather dependent outages, look across seasons, etc.

 Need more comprehensive data and models

Long, coherent datasets are needed to describe load/resource behavior

What are things we know less about?

 How do we consider extreme events and climate change?

 How do we include changes in load – demand flexibility, electrification, ? How do we better assess reliability contribution of resources?

Improved datasets and incorporation into RA assessments

Load forecasting, large and small demand side resources

Improved capacity accreditation methods and tools to support

EPRI Resource Adequacy Forum

What is it?

Deep dive series on RA modelling from leading projects and assessments

21 February Webcast 4: Extreme Events

Who is it for?

Practitioner deep dive on topical study followed by reactions and topical breakout

Format

Practitioner deep dive on topical study followed by reactions and topical break-out

RA Knowledge Center – In-Progress

Goal

To provide clear, complete and insightful information to support practitioners in their selection of methods to assess resource adequacy.

Mailing List – Scan Below or <u>Click Here</u>

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved