Your world in real time.

Technologies

RTDS Technologies Inc.

- 30 years in business
- Headquarters in Winnipeg, Canda
- Customers in 57 countries
- Over 500 installations

CUSTOMER BASE

Our clients are leading...

- Electrical power utilities
- Electrical equipment manufacturers (all major vendors of HVDC/FACTS, protection equipment, renewables, etc.)
- Research and learning institutions
- Consultants

TRUSTED BY UTILITIES WORLDWIDE

TYPES OF DIGITAL SIMULATION

Type of Simulation	Load Flow	Transient Stability Analysis (TSA)	Electromagnetic Transient (EMT)
Typical timestep	Single solution	~ 8 ms	~ 2 - 50 µs
Output	Magnitude and angle	Magnitude and angle	Instantaneous values
Frequency range	Nominal frequency	Nominal and off- nominal frequency	0 – 3 kHz (<15 kHz)

Dommel algorithm of nodal analysis used in RTDS, PSCAD, EMTP, etc.

NOVACOR 2.0: CURRENT-GEN HARDWARE

- Custom parallel processing computer
- Modular design
- Main interface is through user-friendly software
- Ample I/O to connect physical devices

NOVACOR 2.0: DEDICATED DESIGN

- RTDS Technologies is maintaining the competitive advantage afforded by a dedicated design
- Platform optimized for hard real-time simulation
- IBM POWER9 RISC processor
- No operating system used by the processor while simulation running
 - bare metal operation
- Operates directly from cache memory for maximum efficiency
- Worked closely with IBM for optimal communication settings
- Provides ultimate in determinism and performance

INSIDE THE NOVACOR 2.0 CHASSIS

CORE LICENSING

PARALLEL PROCESSING ON TWO LEVELS

LARGE-SCALE SIMULATION

- Maximum of 144 NovaCor chassis in one simulation
- Precise timing shared between all chassis, one master
- Star point interconnection between all chassis for ease of communication
- Tens of thousands of buses running hard real time EMT simulations

CUSTOM HARDWARE COMPONENTS

Flexible and Expandable I/O

- Isolated 16-bit analogue input/output cards
- Easily daisy-chain connected to a single NovaCor fibre port

CUSTOM HARDWARE COMPONENTS

GTNETx2: Network Communication

- Communication with external devices over Ethernet
- Card has two "modules" and can have two network protocols operating simultaneously

IEC 61850

- GOOSE Messaging - IEC 61850-9-2LE, IEC 61869-9 Sampled Values

SCADA DNP3 and IEC 60870-5-104

Large data playback

PMU

IEC/IEEE 60255-118-1

MODBUS

TCP, RTU over TCP, ASCII over TCP

Generic TCP/UDP Sockets

GTSOC V2

Optional auxiliary hardware based on FPGA and system-on-a-chip (SOC)

- Amalgamates the functionality of the GTFPGA Unit (previous hardware), plus black box control
- Function defined by active firmware
- MMC Valve and Control
- Sampled Values (-9-2LE + IEC 61869-9)
- Small timestep frequency dependent tline
- Generic Power Electronics Solver (GPES)
- Black box control

The new GTSOC V2

Supporting Vendor Black-Box Controls

- ARM cores on the GTSOC V2 support execution of static library file (.a) compiled from original source code using .exe provided by RTDS Technologies
- Control code is not accessible by user, but vendor can choose to make some parameters changeable
- Compatible with NovaCor systems (connected via fiber cable)

RSCAD® FX

- Includes everything required for simulation studies
- Comprehensive and proven component libraries
- No additional add-on modules required for any aspects of simulation
- No third-party modules
- Site license and one maintenance agreement

RICH COMPONENT LIBRARIES

- Power systems
- Controls
- Power electronics
- HVDC & FACTS
- Protection
- Renewables
- Etc.

Differential

Protection

┝╸╴└╺┥

Load

Shedding

Relay

Overcurrent

Protection

6

Distance

Protection

Generator

Protection

ML

SCRIPTING

- Efficient means of running many cases
- Scripting Utility Tab
- Scripts can be written or recorded from user actions
 - C-like programming language
 - Adaptive via if, for, while statements
 - User-defined subroutines
 - Customized results reporting
 - Automated plot printing
- Python scripting support

Libra	ry 🗙 🗔 Scratch 🗙 🏪 File Manager 🗴 🔀 Runtime Signals 🛪 🧾 Runtime Scripting 🗙	_ 🛙		
] 🖹 🏲 🕨 🔲 ● 🛛 acsys1			
*script.so	r ×			
1				
2	/***** Start recording *****/	2		
3	SUSPEND 1.245;			
4	Start;			
5	SUSPEND 1.263;			
6	PushButton "Subsystem #1 : Sources : SRC : Ftrg";			
7	SUSPEND 0.115;			
8	<pre>8 ReleaseButton "Subsystem #1 : Sources : SRC : Ftrg";</pre>			
9	SUSPEND 1.743;			
10	Stop;			
11	/***** Stop recording *****/			
12				
7 8 9 10 11 12	SUSPEND 0.115; ReleaseButton "Subsystem #1 : Sources : SRC : Ftrg"; SUSPEND 1.743; Stop; /****** Stop recording *****/			

MULTI-RATE SIMULATION

HARDWARE IN THE LOOP FOR GRID MODERNIZATION

Distribution

- Microgrid testing
- Renewables/DERs
- Distribution automation
- Inverter testing

Smart Grid

- WAMPAC testing
- PMU studies
- Cyber security

Power Electronics

- HVDC and FACTS
- Energy conversion
- Drives
- PHIL

Protection

- Digital substations (IEC 61950)
- Travelling wave based relay testing

THE ADVANTAGES OF THE WORLD LEADER

RTDS Technologies is the world leader in real-time power system simulation.

- Customers in 50+ countries trusted by leading manufacturers, utilities, research institutions across the globe
- Proven reputation for a **quality** product and excellent customer **support**
- Continued product **development** in response to customer needs
- Flexible, modular solution composed of **custom** hardware and software designed in-house
- Global market leadership means **experience** with a range of applications

