

European Calculation of Transmission Benefits

Name: Prof. Dr.-Ing. Albert Moser, ESIG Fall Tech Workshop, 28. October 2021

Agenda

- European Market for Electricity
- European Ten-Year Network Development Plan
- Bidding Zone Review
- German Grid Development Plan

European Market for Electricity - Key Figures

Fuel	Production/Consumption in 2020		
Lignite	200 TWh		
Hard Coal	165 TWh	1020 TWh	
Gas	545 TWh	1020 1 4411	
Other fossil	111 TWh		
Nuclear	685 TWh	685 TWh	
Hydro	352 TWh		
Wind	396 TWh		
Bioenergy	155 TWh	1054 TWh	
Solar	144 TWh		
Other renewables	7 TWh		
Imports	19 TWh	19 TWh	
Demand	2778 TWh	2778 TWh	

Source: European Union Agency for Fundamental Rights

Source: Agora Energiewende, EMBER

European Market for Electricity - Framework

REGULATION (EU) 2019/943 ... on the internal market for electricity

⇒ Regulations for European and cross-border issues

Zonal market model

- Electricity trading
- Capacity allocation
- Congestion management
- Bidding zone review ②

Resource adequacy

Transmission system operation

Ten-year network development plan ①

Distribution system operation Network codes REGULATION (EU) 347/2013 ... on guidelines for trans-European energy infrastructure ...

⇒ Regulations for energy infrastructure priority corridors and areas

Project of common interest

 Energy system wide costbenefit analysis (part of ①) DIRECTIVE (EU) 2019/944 ... on common rules for the internal market for electricity ...

⇒ Requirements for national law

Organisation of the Electricity sector Consumer empowerment/protection Distribution system operation Transmission system operators

Network development plan ③
 Regulatory authorities

Ten-Year Network Development Plan - Overview

Scenarios

National trend

- In line with national climate plans
- Bottom-up
- Up to 2040

Distributed energy

- In line with COP 21
- Top-down
- De-centralized innovation
- up to 2050

Global ambition

- In line with COP 21
- To-down
- Centralized innovation
- up to 2050

System needs

Show borders/areas where new solutions for electricity exchange is needed

Transmission capacities just to express the needs, not to express solutions

Focus on cross-border capacities

Based on national trend scenarios 2030 and 2040

Criteria: socio-economic welfare

European projects & PCI

European wide call for projects to reinforce the grid

Assessments of projects based on a pan-European CBA methodology

- Multi criteria assessment
- PINT & TOOT

Non-binding community-wide tenyear network development plan

TYNDP is the sole basis for the selection of projects of common interest (PCI).

Ten-Year Network Development Plan - Szenarios

Ten-Year Network Development Plan - Identification of System Need Methodology

Ten-Year Network Development Plan - System Needs

Ten-Year Network Development Plan - Cost Benefit Analyses

Key benefits being considered

- 1. Reduction of overall generation cost by dispatch and re-dispatch
- 2. Monetized CO₂ emissions resulting from the new exchange and the evolution of losses.
- 3. The change in the curtailed energy volume induced by the project.
- The evolution of emissions of several polluting gas induced by the generation mix (NOX, NH3, SO2, particulate matter, ...)
- 5. The evolution of the volume and the cost of electric losses on the grid.
- The support to adequacy by reducing the loss of load expectancy and decreasing the need of generation capacity
- ... Balancing energy/capacity exchange, stability, avoidance of renewal/replacement costs, redispatch reserves

3 rd	ENTSO-E	Guideline	for	Cost
	iefit Analysi jects	s of Grid De	velo	oment

entso

Draft version

28 January 2020

	National Trends 2025	National Trends 2030	Global Ambition 2030	Distributed Energy 2030
B1 - Socio-economic welfare	~	~	~	~
B2 – CO ₂ emission	~	V	Partially	Partially
B3 – RES integration	~	V	~	~
B4 - Non Direct Greenhouse Emission	~	~	×	×
B5 - Losses	~	~	×	×
B6 - Adequacy	×	~	×	×

Ten-Year Network Development Plan - Transmission Projects (under Consideration)

Ten-Year Network Development Plan – Example: Nautilus (Interconnector Belgium – UK)

Increase in socio-economic welfare

B1 Annual Socio- Economic Welfare (SEW) increase (M € / year)	max average min	12 11 9	39 37 36
B1_CO2 Annual Socio-Economic Welfare increase resulting from CO2 emissions reduction	max average min	3 3 2	15 13 12
B1_RES Annual Socio-Economic Welfare increase resulting from RES integration	max average min	1 1 0	7 5 4

Reduction of CO2 and GHG emissions

B2a Annual CO2 max variation from market simulation (ktonnes / year) min	-99 -114 -134	-428 -479 -548
B2a_€ Annual Societal cost variation resulting from CO2 variation from market simulation monetised (M € / year) CO2 60€/ price ton 100€/ ton 189€/	4 9 19	15 34 77
B2b Annual CO2 variation due to network losses (ktonnes / year)	-66	443
B2b_€ Annual Societal cost variation resulting from CO2 variation from network simulation monetised (M € / year) CO2 60€/ price ton 100€/ ton 189€/	6 5 11	-14 -32 -71

Integration of renewable energy sources

B3 Annual avoided max curtailment (RES average integration) (GWh / year) 22 7	200 139 105
--	-------------------

Impact on grid losses

B5 Variation of network losses (GWh / year)	average	-13	901
B5_€ Variation of network losses monetised (M€ / year	average	-1	31

Security of supply

B6 Annual reduction in Energy Not Served (MWh / year)	max average min		3200
B6_€ Annual Socio- Economic Welfare increase resulting from reduction in Energy Not Served monetised (M€ / year)	average	n/a	32

Bidding Zone Review - Day-Ahead & Intraday Market Coupling of European Electricity Markets

Source: ENTSO-E Source: ENTSO-E

Bidding Zone Review - Bidding Zones and Cross-Bidding Zone Capacity Allocation

Today's bidding zones

NTC vs. flow based capacity allocation

CORE region applying flow based approach

Source: Florence School of Regulation

Source: Elia International

Source: Joint Allocation Office

Bidding Zone Review – Evaluation Criteria

Market efficiency

- Economic efficiency
- Firmness costs
- Market liquidity
- Market concentration and market power
- Effective competition
- Price signals for building infrastructure
- Accuracy and robustness of price signals
- Transition and transaction costs
- Infrastructure costs
- Market outcomes in comparison to corrective measures
- Adverse effects of internal transactions on other bidding zones
- Impact on the operation and efficiency of the balancing mechanisms and imbalance settlement processes

Network security

- Operational security
- Security of supply
- Degree of uncertainty in cross-zonal capacity calculation

Stability and robustness of bidding zones

- Stability and robustness of bidding zones
- Consistency across capacity calculation time frames
- Assignment of generation and load units to bidding zones
- Location and frequency of congestion (market and grid)

Energy transition

RES integration

German Grid Development Plan - Overview

German Grid Development Plan - Evaluation Criteria

- Cost benefit analysis for cross-border interconnectors similar to European TYNDP
 - by TSOs during grid planning
 - by German regulator during conformation process
- Planning rules of German TSO for national lines
 - (n-1) criterion
 - NOVA principle (network optimization before network reinforcement before network expansion)
- Confirmation rules of German national regulator for national lines
 - Effectiveness = reduction of Germany-wide non-transferable electricity across all lines (congestion index).
 - Necessity = observed utilization of a new line of at least 20%.
 (extension of 110 kV distribution grid to be preferred otherwise)
- Cost benefit analysis by TSOs and national regulator for ad-hoc measures (PST, ...)
 - Savings in redispatch for 3 ... 5 years exceed investment costs.

German Grid Development Plan – Confirmed Lines and Ad-hoc Measures

Source: BNetzA

Source: German TSOs

