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An Ambitious Future

• Estimates range from 

below 50% to 80% 

renewables by 2050

• Many reports ignore the 

operational issues of 

renewables 

• Consensus that 

significant changes are 

required to address 

climate change

Image:Bardi & Sgouridis (2017)
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• Interconnected, renewables, storage, DER, and consumer 

participation

• Participating resources are split across transmission and 

distribution (or microgrids)

– ISO including distribution system flexibility 

– Distribution flexible loads, respond to signals from ISO 

➢ New operational models for co-ordinated decision making 

Key Features of the Future
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• All visions of the future grid include storage (utility scale, 
and distributed) as a key component for reliability

• Scalable algorithms for operating multiple storage units on a 
network are required

Example 1: Storage Changes Operational Decisions

The intertemporal nature of charge/discharge

decisions make the problem more challenging,

and higher dimension

Most existing research addresses a single 

storage unit, and/or no network constraints
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Stochastic Dynamic Programming
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Stochastic Dynamic Programming

Theoretically optimal solution, but 

challenges in:

• Computing the expectation

• Optimization at every state (st,pt-1,wt-1)
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Approximate Stochastic Dynamic Programming
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Approximate Stochastic Dynamic Programming

Approximate the expectation with a 

simpler function of the state 

estimators
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Compare to true optimal for a small, solvable (for SDP) system 

with one storage unit. 

Experiments show that 

• SDDP approximates the true optimal within 0.25%

• Take less than 15% of the computation time

How accurate is SDDP?
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How scalable is SDDP?
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Utility scale renewables 

create uncertainty

Responsive loads, storage, 

other distributed resources 

Example 2: Demand side participation changes 

operations 
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• Consider placement of a responsive DSO on a transmission 

system model

• Select candidate location for the responsive node based on 

congestion studies

• Explore impact of import/export pricing strategies on 

transmission congestion conditions 

• Stochastic UC at transmission, with distribution flexibility via 

new pricing scheme

Co-ordinated decision making example
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Distribution Impacts on Transmission

Investigations detailed in [Liu et al., 2016] illustrate the benefits of 

transmission/distribution co-operation 
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Distribution Impacts on Transmission

Investigations detailed in [Liu et al., 2016] illustrate 

transmission/distribution co-operation 

Alternative pricing schemes for transactions 

between microgrid and transmission system 

Frequency of Transmission Congestion by hour

Distinct differences in 

congestion results 
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Distribution Impacts on Transmission

Adjusting pricing 

scheme also reduces 

LMP variability at the 

connected bus

ISO/Distribution exchange at LMP

Adjusted pricing function
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Benefits to Distribution

Net Export Distribution  
Study indicates that both systems accrue

benefits, even in simple case.

Solar generation scenarios (distribution)
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The fundamental assumption is that the transmission system will provide a

prescribed voltage at the substation, and the distribution system will deliver the

power to the individual residential and commercial customers.

NAS (2016). Analytic Research Foundations for the Next-Generation Electric Grid. 

Co-optimization of T&D

Decoupled Coupled

Image credit: Visvakumar Aravinthan
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Co-optimization 

UC/ED for Transmission System 

EMS Optimization for

Distribution System 1

EMS Optimization for

Distribution System 2

EMS Optimization for

Distribution System N
…

Distribution system:

Uncertainty from variable DER

Storage capabilities

Responsive consumers

(Stochastic rolling horizon model)

Transmission system:

Large scale uncertainty from VG

Storage capabilities

Responsive Loads 

(Stochastic rolling horizon model)
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We are currently exploring two approaches:

• Bi-level optimization: the SCUC and economic dispatch 

includes decision variables at distribution to maximize 

“social welfare” 

• Distributed predictive control: relevant information can be 

shared between systems/subsystems, each system 

optimizes for individual objectives, while linking variables 

promote co-operation

Requirement: Scalable Co-optimization Algorithms
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Bi-level Optimization 

UC/ED for Transmission System 

EMS Optimization for

Distribution System 1

EMS Optimization for

Distribution System 2

EMS Optimization for

Distribution System N
…

First approach: Formulate into extensive form, using KKT conditions to include 

distribution level decisions in single formulation

Challenge: Tractable for small number of distribution systems on a single 

network. A single distribution system does not contribute sufficient flexibility to 

support high penetration of renewables. 
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Co-optimization – decomposed, shared information 

UC/ED for Transmission System 

EMS Optimization for

Distribution System 1

EMS Optimization for

Distribution System 2

EMS Optimization for

Distribution System N
…

Second approach: Decompose problem, with iterative feedbacks (similar to the 

simple example described early)

Challenge: Tractable due to decomposition, timing of coordinating information has 

trade-offs.
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1. modern approximate models with provable convergence 

can provide high quality solutions more efficiently,

2. system-wide benefits are possible through co-ordinated

decision making to facilitate responsive loads, and

3. new distributed/co-ordinated models are required that will be 

scalable to high-dimension.

These developments in power system optimization will facilitate 

high renewable penetration scenarios in the future grid.

Examples illustrate that 



Cornell University

These major challenges then become a combination of 

(1) sufficiently accurate models relevant for computing and 

decision making at different layers of such complex, 

interconnected grids, 

(2) sufficiently accurate models for capturing the 

interdependencies/dynamic interactions, and 

(3) control theories that can accommodate adaptive and robust 

distributed, coordinated control.

National Academy of Engineering (2016) states:
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