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Reactor Power \ \E.“_bldaho National Laboratory
Micro-reactor ~\5MW Nuclear Plant Power

Los Angeles Class Submarine ~26 MW 2000

Enterprise Class Aircraft Carrier 8x g 400 |

Nimitz Class Aircraft Carrier 2x97MW, 194MW z 3000 /UnF:TaI:r’::v;E;ver

NuScale Reactor 12 x 60MW, 720MWe E 2000 / / I
Cooper BWR, 800MWe = 1000 ¢ : I I
Westinghouse AP-1000, 1000MWe 0 - R
European Pressurized Reactor, 1650MWe 4 %&e«é@z RECA B
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|ntegrated Reactor \ \m_bldohol\lorionolloborolory

SMR reactor and full primary system in one vessel
Simplified systems I\
Fewer Failure Modes 1| A

Westinghouse ~integrated
Transatomic component/gas
NGNP Alliance component/gas
FliBe Energy — component
GEH Prism — component
Elysium —component
Terrestrial — integrated
TerraPower — component
GA EM2 — component/gas
Holtec — integrated
X-Energy — component/gas

Westinghouse SMR and PWR

HIgn Grage
Industrial Standards

Steam line ¥ s primary  Sofety Grade Secondary

. Heat Removal Heat Removal s Heat Removal
Feedwater line ' by RVACS by ACS ' by Condenser

Containment

Reactor vessel

Steam generator

Nuclear core

Module support
skirt
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Single unit

*160 MWt, 60 MWe, 28% efficient

12 units per plant planned 540 MWe total
*Vessel 2.7m diameter, 20m high, 264t
*Rail, truck or barge shipping

*Natural circulation operation

*ECCS is passive and depends on natural circulation
*365 Staff

NuScale plant showing multiple reactors with
largely below grade construction
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Transient NuScale Model in the Modelica Language
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Modelica Eco-System allows the interconnection of Systems
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Implemented Calculations

e Hot Channel Calculations Al Powr Disrbution at Beginning, Widele, and End of Cycle
— Peaking Factors (radial and axial)

— Bulk Fluid Temperature
— Outer Clad Temperature '/’\/\
— Fuel Centerline Temperature g
— Departure from Nucleate Boiling F
Ratio (DNBR) (EPRI based) e
 Pressurizer
— Heaters |
— Sprays
* Reactivity Control

— Standard Feedback Mechanisms

* Boron, fuel temperature, moderator
temperature, xenon

— Control Banks
— Beginning, Middle, and End of Cycle

Feedback mechanisms can be
simulated.




NRC Design Certification Matching

50MWe/160MWt
Uprated to 60MWe

SG Pressure remains
constant

Turbine Output
Matches Turbine
Demand

Primary System
Flowrate is within 0.4%
of design certification
quotes.

All temperatures and
pressures maintained
within design limits.

Power [Watts thermal]

Power [Watts electric]
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Load Follow Operation

60MWe/200MWt
SG Pressure remains

constant
Turbine Output Matches | o801
Turbine Demand over24 | 50
hour period. e 3 o]
Control Actions are able | _ ]
to maintain
temperatures, pressures, 1 e N
power outputs at safe ’ ) om0 ° : L 20 2
levels. — Turbine Output — = Turbin Demand |, Seconsay Sice ass o
8E7 "
Measures of ramp rate _ 1 m
100%-20%-100% in 24  § W
hours = g
40%/hr ramp rate
20% step in 10 minutes
Bypass to condenser for T TR T AT S S ]
faster ramps (Seconds- e e [}

minutes)
Meets California Duck
curve requirements



Conclusions

* NuScaleis anadvanced design to
addressissues with buildingan
deploying nuclear power plants.

* NuScale can operatein different
modes with modules and load
following.

* SMRs can address different
markets

* Modelshave been made that
include hot channel calculations,
reactivity feedback mechanisms,
control rods, system geometries,
and associated control systems.

* Modelswill be integrated with
existingand new models
(thermal storage, HTSE, RO,
etc...)
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Example:
Pre-conceptual
integrated
system design
with thermal
energy storage.
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