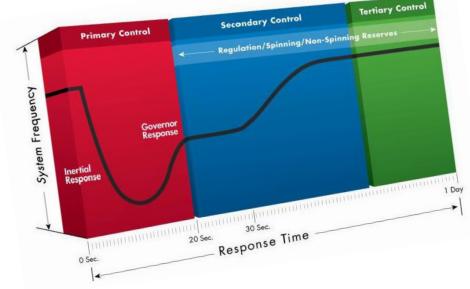


Operating Experience and Opportunities with Flexible Nuclear Plant Operations ESIG 2020 Spring Technical Workshop

Sherry Bernhoft Senior Program Manager

March 19, 2020


Tucson, AZ

in f
 www.epri.com
 © 2020 Electric Power Research Institute, Inc. All rights reserved.

Nuclear Power Plant Flexible Operations is Not New

- Past Operating Experience (OE) in the United States
 - Until mid-1980's nuclear plants were used for frequency control
 - Nuclear Regulatory Commission changed their rules for reactor power control
 - Columbia NPP has decades of flexible operations to balance river flowage
- France
 - 58 reactors with over 30 years of flexible OE
 - Output can vary between 20% and 100% power within 30 minutes, twice a day for load following
 - Provide primary and secondary frequency control
 - Use grey control rods to vary reactor power

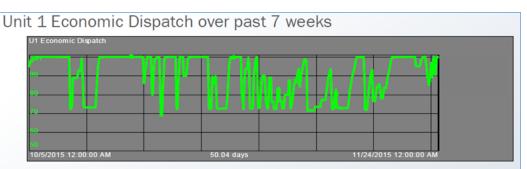
Nuclear power plants were designed for flexible operations

Recognizing the Need to be Flexible in Today's Market

- EPRI research program started in 2013
 - Support transitioning from base load, to flexible operations
 - Assess long-term impacts on the nuclear fuel and plant
 - Develop proactive management strategies
 - Employing a phased approach
- Recent Operating Experience
 - Xcel Day Ahead Market²
 - Exelon Advance Nuclear Dispatch
 - Columbia Load Shaping Agreement
 - Bruce Power Surplus Base Generation
 - CANDU reactor design allows steam bypass mode
 - Europe
 - Belgium and Spain
 - United States
 - Several utilities are actively evaluating options

Phase 1 - Pre-Planned FPO 100 - 70 -100% Power

- On a daily basis sometimes with frequent ramping
- Ramp rate 0.5-1% per minute
- Phase 2 Extended Low-Power
- ~ 50% Power
- 2-8 week duration
- Seasonal


Phase 3 – Expanded FPO 100-30-100%

- Ramp rate 2-5% per minute
- Response to Grid short notice, no defined duration



Key Lessons Learned

- The plant operator is responsible for maintaining a safe operating window
- Training is critical
- Chemistry can be challenging more frequent monitoring may be warranted
- Water usage may increase for PWRs
- Inspection frequencies need to be adjusted for critical components
- Flow accelerated wear rates change
- Maintenance practices need to be robust
- Most plant impacts are latent and additional monitoring for unexpected changes is needed

Unit 2 Economic Dispatch over past 7 weeks

Data provided by Exelon for a PWR

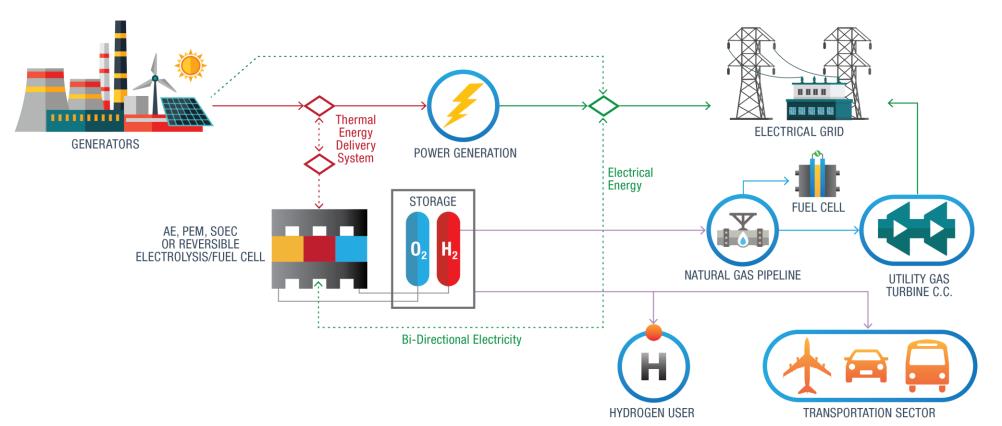
Flexible Operations is being successfully implemented with manageable impacts

An Operating Protocol Is Needed

- Only a licensed plant operator can change reactor power levels
- The rate, depth, duration, frequency and time in reactor core life are tied to core physics
 - Need to be well defined up front
 - Ensure the plant stays within a safe operating envelope at all times
- Plant Management can decide to opt out of flexible operations based on other plant activities
 - Require the full attention of the control room operators, or
 - Require stable core power to complete

Nuclear flexible operations requires close coordination

Optimizing Nuclear Flexible Operations


- Pilot study to quantify the cost of NPP flexible operations
- Expand The Range of Flexibility, i.e. 100-30-100%
 - White Paper published in 2019 on possible 'pinch points'
 - Research started in 2020 to address options
- Frequency Control and Other Grid Services
 - Study on NPP frequency control considerations is in progress
 - Working with DOE on an Economic Drivers for Nuclear Flexible
 Operations study
- Nuclear Beyond Electricity
 - Thermal storage
 - Water de-salinization
 - Hydrogen generation

White Paper December 2020: Technical, regulatory and financial aspects of using NPPs for primary frequency control

Example: Hydrogen Production via Steam Electrolysis

- 1) Provides second source of revenue
- 2) Provides energy storage, for electricity production or hydrogen user
- 3) Provides opportunity for grid services; reserves and grid regulation

Source: Idaho National Laboratory

US Department of Energy is funding demonstration projects for H2 production at existing NPPs

Small Modular and Advanced Reactors Provide Increased Flexibility

Together...Shaping the Future of Electricity

