

Day Ahead and Real Time Operations – A US ISO Point of View

Daniel Harless, SPP

6/19/2018

Overview

SPP RTO Footprint

- Overview of processes that use Variable Energy Resources (VER) Forecasts in the SPP Market
- SPP Operations Market Timeline Overview
 - Study Timeline
 - Study Windows
 - Forecast Data Used for Each Study
- Current limitations and Possible Future Enhancements

SPP Operating Region

- Miles of service territory: 575,000
- Population served: 18M
- Generating Plants: 756
- Substations: 4,757
- Miles of transmission: 60,944
 - 69 kV 13,532
 - 115 kV 14,269
 - 138 kV 9,117
 - 161 kV 5,647
 - 230 kV 7,608
 - 345 kV 10,772

SPP

Wind Energy in SPP

Maximum wind penetration: Instantaneous: 63.96% (4/30/18)

Hourly Average: 62.89% (4/29/2018)

Daily Average: 54.1% (4/29/2018)

2018 up to May 8th: >60%, 6 days >50%, 40days

Max wind swing in a day: >10 GW (12.5 GW to 2 GW back to 12 GW)

Max 1-hour ramp: 3,700 MW

http://www.awstruepower.com. Spatial resolution of wind resource data: 2.5 km. Projection: Albers Equal Area WGS84.

Wind Capacity Installed by Year

• SPP

Load Forecast Usage

Study Forecast Types

Short Term Forecast:

- Forecasts 5 minute intervals for the next 4 hours.
- Receive updates every 5 minutes

Mid Term Forecast:

- Forecasts one hour intervals for the next 10 days.
- Receive updates every hour

Studies that use the forecasts

- MDRA MTF
- DARUC MTF
- IDRUC MTF
- STRUC STF
- Pre_RTBM STF
- RTBM– STF

VER Forecast Usage

- Study Forecast Types
 - Short Term Forecast (STF):
 - Forecasts 5 minute intervals for the next 4 hours.
 - Receive updates every 5 minutes
 - Mid Term Forecast (MTF):
 - Forecasts one hour intervals for the next 72 hours.
 - Receive updates every hour
 - Long Term Forecast (LTF):
 - Forecasts one hour intervals starting 48 hours in the future to 168 hours in the future.
 - Receive updates 8 times a day.
 - The availability is limited by the availability of weather forecast data.
- Studies that use the VER forecasts
 - MDRA MTF and LTF if available
 - DARUC MTF
 - IDRUC MTF
 - STRUC STF
 - Pre_RTBM STF
 - RTBM– STF

Other VER and Load Forecast Usage

Regulation Requirements

- Load Magnitude
- Load Variability
- VER Forecast Magnitude
- VER Forecast Variability

Possibly Contingency Reserve Requirements

- Currently there is not a single contingent element that would cause a VER or a group of VERs to be the Most Single Severe Contingency (MSSC), but in the future this may become a reality.
- In this case the forecast for that MSSC might be used to calculate the Contingency Reserve Requirement.

Multi-Day Reliability Assessment (MDRA)

- Primary function is to analyze the system to address capacity issues days in advance of the DAMKT and DARUC.
- Run around Midnight each day
- The study window is beginning the next morning and goes through 7 days.

Multi-Day Reliability Assessment (MDRA)

Study Load Forecast Window

• SPP

Day-Ahead Market (DAMKT)

- Financially binding market with the resource commitments being passed on to real-time.
- Closes at 9:30 a.m. and is approved at 2:00 p.m. each day.
- The study window is the next day.
- Forecasts are <u>not</u> used in the DAMKT. Bid in Load and VER capacity is used.

Day-Ahead Reliability Unit Commitment (DARUC)

- Primary function is to use the most recent VER and Load forecast to determine any extra commitments needed after DAMKT.
- Run between 14:45 and 17:15 with results of additional commitments communicated at 17:15.
- The study window is from 18:00 the current day through the next day.
- Does not de-commit units unless there is an energy surplus.

Intra-Day Reliability Unit Commitment (IDRUC)

- Primary function is to use the most recent VER and Load forecast to determine any extra commitments throughout the market day.
- Run at least every 4 hours, but typically every hour.
- The Study window is now to the rest of the day, except after the DAMKT approves.
- After the approval of the DAMKT it runs from now to the end of the next day.
- Does not de-commit units unless there is an energy surplus.

Short-Term Reliability Unit Commitment (STRUC)

- Primary function is to use near real-time forecasts to determine if minor adjustments to the operating plan are needed.
- Run every 15 minutes with 15 minute intervals.
- The Study window is now to through the next 3 hours.
- Must respect the current operating plan for the first two intervals and return everything to the operating plan at the end of the study.

Pre Real-Time Balancing Market (PRE_RTBM)

- Primary function is to give the operators an idea of how the system looks over the next 2 hours with no additional commitments.
- Run every 15 minutes with 5 minute intervals for the first 3 intervals and then 15 minute intervals for the next 7 intervals.
- The Study window is now to through the next 2 hours.
- Does not commit or de-commit any resources. It dispatches the resources in the operating plan.

Real-Time Balancing Market (RTBM)

- RTBM's is the reliability dispatch and the real-time pricing study.
- Run every 5 minutes for one 5 minute interval.
- Does not commit or de-commit any resources. It dispatches the resources in the operating plan.
- Echoes VER output unless prices dictate they be curtailed. When the curtailment is released RTBM tries to dispatch the VER back to the Short-Term Forecast.

Current Limitations and Possible Enhancements

- Due to RTBM echoing the output of VERs deviations in the real-time dispatch to the real-time output can occur.
- One method being discussed to reduce this deviation is to profile the VER output from the last few intervals and project the VER dispatch.

Current Limitations and Possible Enhancements

DVER Regulation Deployment

- In our current market we allow qualified Dispatchable Variable Energy Resources (DVER) to provide regulation down.
- Because our regulation deployments can vary widely in time we do not make our clearing engine aware of these deployments.

Regulating DVER inefficiency

- Since DVERs are echoed in RTBM any regulation down deployment looks like lowered capability.
- This can cause a cycle of dispatch and regulation down deployments that drive the output of the DVER lower than intended.

Enhancement

- The DVER will send SPP their potential output limit for use for energy.
- SPP will use the potential output limit as the basepoint for any regulation down deployment.

Questions ?

20