

ESIG GETs – Dynamic Line Rating

How to connect renewables, Quicker & safer

Brian Berry

23 October 2023

Contents

- What is DLR? Why DLR?
- Implementation hurdles
 - Technical
 - Systematic/process
 - Financial
- Case studies

Transmission lines are cooled by local weather conditions

U.S. Department of Energy | April 2014

Ampacimon

Solar Heating (q,) Joule Effect Heating (l?R) (l?R) (l?R)	()
$I^{2}R(Tc)+q_{s}-q_{c}-q_{r} = \rho C \frac{\Delta Tc}{\rho \Delta t}$	So

Operating Conditions	Change in Conditions	Impact on Capacity	
Ambient temperature	2 °C decrease	+ 2%	
	10 °C decrease	+ 11%	
Solar radiation	Cloud shadowing	+/- a few percent	
	Total eclipse	+ 18%	
Wind	3 ft./s increase, 45° angle	+ 35%	
	3 ft./s increase, 90° angle	+ 44%	

Source: Navigant Consulting, Inc. (Navigant) analysis; data from (7)

Table 1. Impacts of Changing Operating Conditions on Transmission Line Capacity

Typical Gain Statistics

ST Forecast gain - line

Period: from 2022-11-08T00:00:00.000Z to 2023-05-02T00:00:00.000Z

5

Implementation Hurdles

Technical

Lab tests
Field Tests
Technical

documentation & peer review

 Competitive solutions Systematic/ Process

Cybersecurity

✓Data connections

- ✓Real time use
- Forecast use with market connections

✓Operational systems

Financial

Who benefits vs who pays

Regulatory incentives/mandates

	6 : 6 · 6 · 6 · 6			
PPL Electric Utilit First Fully Operation	ies - Use Case onal DLR System in N	orth America)> An	npacimon
	BL	JSINESS CASE		
	Reconductor	Rebuild [Dynamic Line Ratii	ng
Time to Implement	2 – 3 Years	3 – 5 Years	~1 Year	
Downtime	Extended Outages	Extended Outages	No Outages	
Cost	\$0.5 M per mile	\$2 - 3 M per mile	< \$1 M	
Est Capacity Benefit	+ 34%	+ 106%	+ 10 - 30%	

.

PPL Electric Utilities - Use Case First Fully Operational DLR System in North America

EMS INTEGRATION

One line with DLR saved around \$23 Million in one year in congestion costs!

Ampacimon

pp

Elia - Belgium / Reduce congestion management costs

elia

Challenge / Pain Point

- High North to South flows with outage on backbone 380kV line
- High wind infeed expected
- Overload threatening grid security

Solution

- Dynamic Line Rating on critical 380kV Lines
- +30% extra capacity released

Outcome

- Further PST tapping avoided
- 500 000 EUR of International Redispatch saved in one day

14/09/2017 **National Grid Control Center** Belgium

RTE - France / Defer grid investment

Rie

Challenge / Pain Point

- French Alps resort with growing ski-season consumption
- Peak only seen in some months of the year
- Mountain area makes upgrade works dangerous and costly

Solution

- Preliminary evaluation : 40% gain in the winter seasons
- DLR System installed Nov 2012 (just before season start): 4xSensors + Real-time Monitoring + Forecast

Outcome

- Smooth operation during winter load peaks
- After 4 years of monitoring, no reinforcement needed
- Avoided new line investment

2012 DLR deployment in French Alps

Elia - Belgium / Maximize acceptable generation infeed – Wind case

Challenge / Pain Point

- High wind generation infeed in Western Europe
- Congestion expected as static rating will be exceeded
- Clearance and conductor temperature beyond safety values

Solution

- Dynamic Line Rating to measure real-time line capacity
- Implementation in SCADA to allow capacity beyond static rating

Outcome

- 20% extra capacity 90% of time with low wind speeds (<5m/s)
- Double capacity available under favorable cooling conditions
- Constant monitoring of clearance & conductor temperature

Thank You

Disclaimer

This document (the "Document") with the information contained herein is confidential and proprietary to Ampacimon SA ("Ampacimon"). Without prior permission from Ampacimon no person accepting this document will release or reproduce (in whole or in part) this Document, discuss any information contained therein, make representations or use such information for any purpose.

Ampacimon – World Leaders in DLR

Founded in 2010 | 24 different countries globally | over 200 transmission lines | Sensor-based solutions

