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In a low-carbon, low-inertia, low-system strength grid...

= How do we model and assess electrolysers’ capabilities to provide system
balancing and dynamic services?

— Focus here on active power balancing and frequency control ancillary services
(FCAS)

=  What types of dynamic supports can we get from electrolysers?

= What are the benefits and challenges?
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An Overall View on Grid Integration of MANCHESTER
Hydrogen Electrolyzers
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Unified Dynamic Modelling Framework

= Three modelling components: = Electrolysis stack:
— Electrolysis stack — Electrical circuit representation
— Power-electronics interface and control — Hydrogen production sub-model
— Downstream hydrogen process/buffer — Thermal sub-model and its impact on

converter control part
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M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility-
Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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Power electronics interface and controls

= @Grid interface and controls
— Grid Following control
- Virtual Synchronous Machine (VSM) control

= FCAS type (power reference setting strategy)
— Contingency FCAS
e Fast Frequency Response and Primary Frequency Response

— droop control
— sustained droop control
— RoCoF-based control

— Regulation FCAS

— Virtual Inertia (from VSM control)
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Case Studies (1/3): A

Fast Frequency Response from Electrolysers

Electrolyser benefits in
low-inertia systems

. Electrolyser’s frequency support capability
in the context of Australian 50%
renewable energy target by 2030

. Contingency: the largest generating unit
outage in Queensland with total capacity
of 667 MW at t=40s

Generation and load data
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Case Studies (1/3): 1824

Fast Frequency Response from Electrolysers
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M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility-
Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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Fast Frequency Response from Electrolysers

= The following PEM electrolyser scenarios are studied:

Electrolyzer input power [MW]

1GW HE in VIC grid, droop control
1 GW HE in QLD grid, droop control
1 GW HE in QLD grid, sustained droop control

i)
i)
i)

iv) 1 GW HE in QLD grid, RoCoF-based control
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M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility-
Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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Case Studies (2/3): MANCHIIER
Regulation FCAS from Electrolysers
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M. Ghazavi Dozein, A. M. De Corato, and P. Mancarella, “Virtual Inertia Response and Frequency Control Ancillary
Services from Hydrogen Electrolyzers," Under Review, IEEE Transactions on Power Systems, 2021.
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Case Studies (3/3):

Virtual Inertia Response from Electrolysers
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M. Ghazavi Dozein, A. M. De Corato, and P. Mancarella, “Virtual Inertia Response and Frequency Control Ancillary
Services from Hydrogen Electrolyzers," Under Review, IEEE Transactions on Power Systems, 2021.
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Ongoing applications:
Hydrogen-RES energy hubs
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RES-hydrogen grid and market services
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J. Naughton et al., “Optimization of Multi-Energy Virtual Power Plants for Providing Multiple Market and Local Network Services”, Electric Power Syst. Research, 2020

S. Riaz and P. Mancarella, “"Modelling and characterization of flexibility from DER"”, IEEE Transactions on Power Systems, 2021
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Key Remarks -

= The modelling and studies presented here are based on a unified dynamic
modelling framework for utility-scale electrolysis plants we recently proposed

= PEM electrolysers have great potential in providing
— Fast frequency response (and primary frequency response)
- Regulation FCAS

- Virtual inertia response (if equipped with virtual synchronous machine
control)

= Alkaline electrolysers have great potential in providing regulation FCAS

=  Frequency control from electrolysers may reduce the need for frequency control-
oriented battery installation

= Market opportunities are becoming mature
= Possible challenges in providing frequency control from electrolysers
— Limited converter capacity

— Interactions with operational constraints in hydrogen production - cross-sector
planning is required
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Sustainability, reliability and MANCHESIER.
resilience in future grids

P. Mancarella, “Electricity grid fragility and resilience in a future
net-zero carbon economy”, Oxford Energy Forum, 2020
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= Grid-following control

= Reactive power control via grid-side

- Synchronization via phase-locked
loop (PLL)

(DC/AC) converter

= Active power control via stack-side

(DC/DC) converter

= Consideration of H, operational

constraints in converter control loops

= Active power reference strategy for

frequency stability response provision

q

HE Dynamic Model including
Power-Electronics Interface and Control

MANCHESTER

1824
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Services from Hydrogen Electrolyzers," Under Review, IEEE Transactions on Power Systems, 2021.

M. Ghazavi Dozein, A. M. De Corato, and P. Mancarella, “Virtual Inertia Response and Frequency Control Ancillary ]
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Active Power Reference Strategy (1/2)

Converter constraint
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Active Power Reference Strategy (2/2)

= Sustained droop response via the strategy presented in (a)
= RoCoF-based response via the strategy presented in (b)
= Both strategies can further be developed to account for thermal sub-model impacts

------------------------------
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[ M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility- ]

Converter constraint

Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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HE Dynamic Model including iz
Power-Electronics Interface and Control

= Virtual synchronous machine (VSM)
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Real-Life Examples (1/3)

(»)ITM POWER  IetoiaiSiVINI=

3

GERMANY |
(Cologne)

— m—

(Sh l#( Id) \ World’s largest PEM electrolyser
effie ‘

Capacity: 100 MW (initially 10 MW), plan for
1000+ MW

Structure: Modular electrolyser
Voltage level: 11 kV (each module)

Grid application: Grid balancing, frequency
stability, and voltage stability and control

Further information: www.itm-power.com/refhyne Response time: in the order of milliseconds
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Real-Life Examples (2/3)

—ENERGIE
PARKMAINZ

Wind energy

rover ‘= | Number of electrolysers: 3
‘ Type: PEM (Siemens)
S
F— Rating: 1.3 MW, peak power
Hydrogen production up to 2 MW eaCh
through electrolysis and subsequent storage
Voltage level: 22 kV
™ Hydrogen Hydrogen Ramp up/down time: in the

7 _ order of second(s)

. ‘ ﬂiﬁ - Grid application: Grid

ﬁn. Domestc homes h balancing and system
e frequency supports

Fuelling station g | - =
o = Gas power plant
or CHPP

Further information: www.energiepark-mainz.de
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Real-Life Examples (3/3)

energystack ® ¢

Pist cycte gas-storage Project: H2Future

Project: HyStock Country: Austria

Country: the Netherlands ':%fx(logﬁE Technology: 6 MW PEM electrolyser
Technology: 1 MW PEM electrolyser + 1 MW PV Grid application: frequency stability supports

Further information: www.h2future-project.eu

Grid application: ancillary service provision

Further information: www.energystock.com

NYBalance

Project: Ontario IESO Project: HyBalance
Country: Canada Country: Denmark
Technology: MW scale PEM and alkaline Technology: 1.2 MW PEM electrolyser

electrolysers (e.g., 2.5 MW) Grid application: grid balancing

Grid application: frequency regulation Further information: www.hybalance.eu
Further information: www.cummins.com
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Case Studies: FFR Interaction B2
with Operational/Converter Constraints

. Contingency: the Heywood trip at t=40s.
Before the trip, 110 MW was being
transferred from SA to VIC

. The following cases are studied:

v'Case-1: System with no electrolyzer

v'Case-2: 1 GW electrolyzer in SA, no
converter overloading capability

v'Case-3: 1 GW electrolyzer in SA with 10%
converter’s overloading capability

v'Case-4: 1 GW electrolyzer in SA grid, and
modelling of hydrogen buffer and
downstream H, process

dsos Hsoe 304 00 VIC-NSW grid:
] :

YPS 3

Modified 14-generator NEM grid
with 50% renewable penetration

M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility-
Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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Case Studies: FFR Interaction
with Operational/Converter Constraints
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Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.

[ M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility- ]
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Take-Home Messages

= There are two potential challenges in fast frequency response provision from
electrolysis plants

= Limited converter capacity
= Solution: converter overloading

= Operational constraints in downstream hydrogen process/buffer

= Hydrogen-electricity cross-sector planning for system security supports

© 2022 P. Mancarella - The University of Melbourne ESIG workshop, Hydrogen tutorial, March 22
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MELBOURNE Case Studies: Frequency Resilience Support 52
from Electrolysers

= We have investigated the frequency resilience benefits from electrolysers in the
context of the August 2018 separation event in Australia

2
50 I : : : : :
[}\é = = =No electrolyzer, Heywood trip, 997 MW UFLS, 190 MW PV trip
s 500 MW electrolyzer, Heywood stability, No UFLS, 190 MW PV trip
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Take-Home Message: Prevention of cascading
[ M. Ghazavi Dozein, A. Jalali and P. Mancarella, "Fast Frequency Response From Utility- ] failures via frequency Control from electrolysers

Scale Hydrogen Electrolyzers," in IEEE Transactions on Sustainable Energy, 2021.
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