

Forecasting Session I: Solar Forecasting 2

Coordinated Ramping Product and Regulation Reserve Procurements Using Probabilistic Solar Power Forecasts

Venkat Krishnan, Ph.D.
Senior Engineer, Sensing and Predictive Analytics Group,
Power System Engineering Center,
National Renewable Energy Laboratory, Golden, CO, USA

2019 Meteorology & Market Design for Grid Services Workshop Denver, CO, June 05, 2019

Project Team

Johns Hopkins University (JHU): Benjamin Hobbs (Principal Investigator), Qingyu Xu

NREL: Venkat Krishnan (Co-PI), Elina Spyrou, Paul Edwards, Haiku Sky

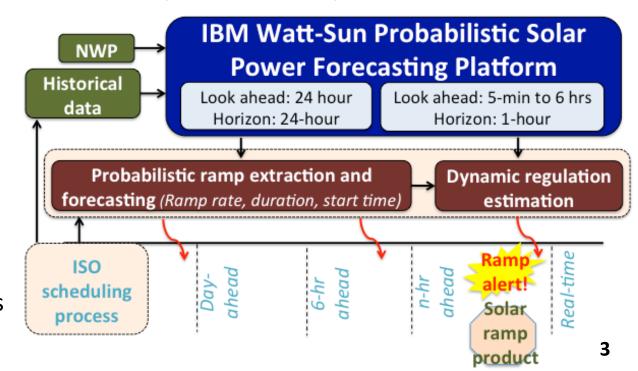
IBM: Hendrik Hamann (Co-PI), Rui Zhang

University of Texas Dallas (UTD): Jie Zhang (Co-PI), Binghui Li

Industry Partners: Amber Motley, Clyde Loutan, Rebecca Webb (California ISO), Blagoy Borissov, Steven Rose (Midcontinent ISO)

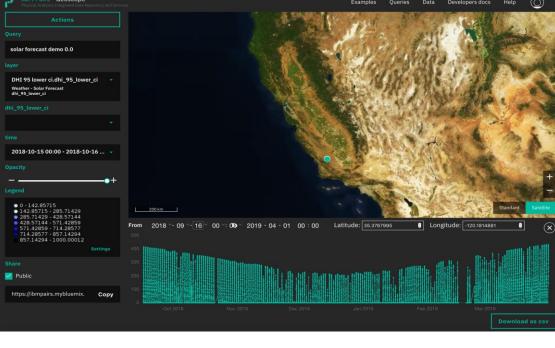
Project Summary

Objective: Integrate probabilistic short- (2-3 hr ahead) and mid-term (day-ahead) solar power forecasts into operations of two ISOs:

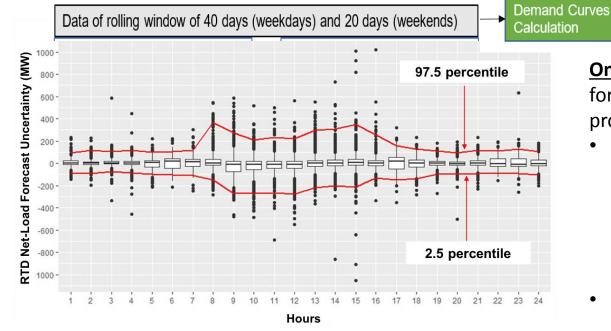

CAISO & MISO

Approach:

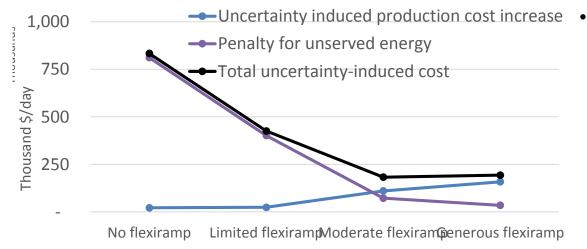
<u>Thrust 1</u>: Advanced big data-driven "probabilistic" solar power forecasting technology using IBM Watt-Sun & PAIRS (Big data information processing and machine learning approaches to blend outputs from multiple models).


Thrust 2: Integrate probabilistic forecasts in ISO operations for <u>ramp</u> <u>product</u> & regulation requirements

Thrust 3: Provide situational awareness via visualizations of probabilistic ramp forecasts & alerts


Use trained models and quantile **Model Training** regression for **FORECASTING** Numerical Weather Solar irradiance **Prediction Models** measurements rediction iviogeis Prediction iviouels solar forecast demo 0.0 DHI 95 lower ci.dhi 95 lower ci **FANOVA Parameter** (feature) selection 2018-10-15 00:00 - 2018-10-16 .. Random Forecast model to predict the forecast error (Train) Gaussian Mixture Model for clustering into number of weather categories (Train) Quantile Quantile regression Finding: Distribution is asymmetrical, hence regression Train important to have quantile regression techniques Train Topaz solar farm, CA 0.05 0.75 0.95

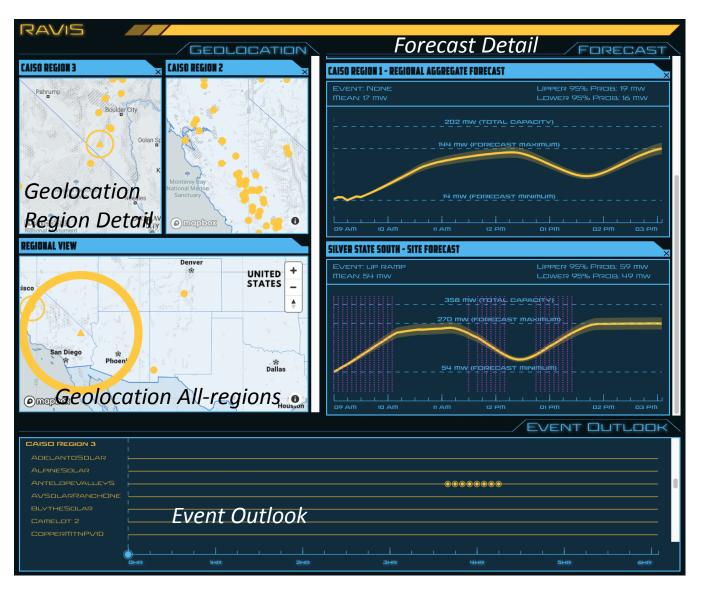
Thrust 1



Future work: AI based short term forecast methods using GOES-R, e.g., Generative Adversarial Neural Network

Contact: rui.zhang@ibm.com or hendrikh@us.ibm.com

<u>Progress 2:</u> Reliability vs. economics of various FRP levels. (IEEE 118 bus system market simulations)


<u>Ongoing work</u>: Integrate probabilistic forecast into ISO FRP procurement process.

- Estimate probabilistic net-load forecasts from IBM solar forecasts using convolution (considering dependence across sites and components).
- Compare the levels of uncertainty in probabilistic forecasts and histograms of historical error.
- Estimate cost and reliability impacts of probabilistic net-load forecast based FRP procurement under high solar futures (IEEE 118 bus and ~20,000 WECC systems)

Contact: <u>bhobbs@jhu.edu</u>, or <u>Venkat.Krishnan@nrel.gov</u>, or <u>jiezhang@utdallas.edu</u>

Thrust 3

Ramp Visualization for Situational Awareness (RaViS)

Features:

- Forecast data from IBM integrated
- RaViS refresh rate of 60 seconds
- User interface: Single page web application and open source
- Shows site specific metadata via hover
- Highly flexible and easily configurable

Future work:

- Net-load ramps
- Adaptable to other kinds of events: outage/trip, cyber threats