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Technical Approach

* Typical approach to irradiance forecasts
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Technical Approach

* HAIMOS approach
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Technical Approach: SCOPE

* Spectral Cloud Optical SEBBE
Property Estimation (SCOPE) L """"" R

e couple radiative modeling with high- R P
resolution spectral satellite imagery | ' i
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* real-time, accurate estimation of
cloud optical properties

* Approach: compare outgoing
longwave radiation (OLR) at the

top of the atmosphere (TOA) from L Aem

remote sensing and radiative e K
modeling. e

« Radiative model (Li et al. (2018)*) -
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*Li, Liao and Coimbra (2018) “Spectral model for clear sky atmospheric longwave radiation”




Preliminary Results: SCOPE
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Preliminary Results: HAIMOS optimization

* Motivation: Improving the forecast skill during large variability periods
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Normalized MBE (left), and RMSE (right) for the validation testing set for BON as a function
of the forecasting horizon. HAIMOS forecast is in black and competing forecasts are in color.
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