

HAIMOS Ensemble Forecasts for Intra-day and Day-Ahead GHI, DNI and Ramps

University of California San Diego PI: Carlos F. M. Coimbra Co-PI: Hugo Pedro (Presenter) Project Team: UCSD and Clean Power Research (CPR)

UC San Diego JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

Technical Approach

• Typical approach to irradiance forecasts

Technical Approach

• HAIMOS approach

Technical Approach: SCOPE

- Spectral Cloud Optical Property Estimation (SCOPE)
 - couple radiative modeling with highresolution spectral satellite imagery
 - real-time, accurate estimation of cloud optical properties
- Approach: compare outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from remote sensing and radiative modeling.
- Radiative model (Li et al. (2018)*)
 - spectrally-resolved and computationally efficient radiative model

 T, ϕ

 $I_{7,\nu}^{\uparrow}, I_{8,\nu}^{\uparrow}, \dots, I_{16,\nu}^{\uparrow}$

RTM model variation with cloud optical depth (Top) and cloud top height (Bottom)

SCOPE

 $\hat{ au}, \hat{z}_T$

Preliminary Results: SCOPE

SCOPE's validation

- Data: 1 complete year (2018) at 5-minute resolution for seven stations (SURFRAD). Validate against DLW measured at each site.
- 2. Clear-sky identification for SURFRAD sites. Compared against CIMSS data

SCOPE's data in forecasting

- GHI forecasting with estimated cloud optical properties from SCOPE
- GHI forecast performance for BON (testing set) for the early-morning hours
- Forecasts produced before sunrise.

Preliminary Results: HAIMOS optimization

- Motivation: Improving the forecast skill during large variability periods
- Input selection depending on the current (measured data) and future (NAM forecasts) irradiance variability.
- Optimization algorithm
 - Test inputs in terms of bias-variance metrics
 - Selects input that ranks highest
 - Iterates over unselected inputs until no improvements are observed.

Normalized MBE (left), and RMSE (right) for the validation testing set for BON as a function of the forecasting horizon. HAIMOS forecast is in black and competing forecasts are in color.

Preliminary Results: HAIMOS optimization

10.0

0.0 INMBE

-5.0 100

0

-100 ^L

[mprovement [%]

- Motivation: Improving the forecast skill during large variability periods
- Input selection depending on current (measured data) and future (NAM forecasts) irradia variability.
- Optimization algorithm
 - Test inputs in terms of bias-variance metrics
 - Selects input that ranks highest
 - Iterates over unselected inputs until no improvements are observed.

on the		Data	Description	
		Measured data	Irradiance data measured	
d		Modeled irradiance	Satellite-derived irradiance data (CPR) for the target	
diance			locations and neighboring nodes (49 in total)	
		CPR _i	Forecasted irradiance from CPR. Several forecasts are	
			available, denoted by the subscript <i>i</i> .	
		NAM	GHI from the NAM model NAM	
		NAMcc	Total Cloud cover from NWP model NAM	
	6	SCOPE data	COD data for the target location (single node and	
Pers.	Ó AM -		extended domain)	MOS
.0 г	te	LES data	COD and cloud fraction for the target location (single	
	Ś		node and extended domain)	i i
.0	×t	WRF-Solar data	COD and cloud fraction for the target location (single	:
	<u> </u>		node and extended domain)	:
.0		Other data	E.g. Cloud fraction from satellite images (broad band)	·
0		-		
)0 r				
				_
0				
0 [1	2 3 4		
		Forecast Horizon [hr]	Forecast Horizon [hr]	

Normalized MBE (left), and RMSE (right) for the validation testing set for BON as a function of the forecasting horizon. HAIMOS forecast is in black and competing forecasts are in color.