The value of solar forecasting

FC Ciéncias b:”
U LI SbOG _"\ centre for ecology, evolution

and environmental changes

Rodrigo Amaro e Silva (rasilva@fc.ul.pt)

L)

June 11t 2020 N O#
ESIG

ENERGY SYSTEMS
INTEGRATION GROUP

2020 Meteorology & Market Design for Grid Services Workshop




«c€3c

centre for ecology, evolution
and environmental changes

Motivation for this session . Y

Why solar forecasting

Variability vs Uncertainty (Ela et al., 201 3)
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High PV-penetration study in Arizona (USA)

0 Uncertainty is responsible for 2/3 of PV-driven imbalance

*Figure from original reference 2
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Why solar forecasting value s

2015-2020: PhD on solar forecasting

1 Read about tons of models, metrics, data sources, etc.

But what about applications? And added value?

0 Scattered references and barely discussed in literature reviews

*Figure created in wordart.com 3
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Solar plant operators . 2% «c€3c
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Mf:.rket bidding . b«c€3c
Utility-scale PV, CPV and CSP

and en Ironmental changes

Plant operators forecast their generation + bid selling price

0 Penalties applied to forecast deviations

O Forecast horizon & penalty mechanism depend on given market
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Market bidding
A PV example .

As an example, (Antonanzas et al., 2017)
o 1.86 MW PV plant in Spain
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Forecast can increase margins by up to 3.65 €/MWh

*Figure adapted from original reference 7
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Grid operators }{:0((263(:
8

Solar
Generation

¢
;‘%‘:’eb e UTILITY
g MICROGRIDS
% =
Smar s
Homes

COMMUNITY
MICROGRIDS

BUILDING
MICROGRIDS

-

Smart " "y Solar
Communities/Cities \ . Generation
\ - "
- ',." v
‘~ ™ ':‘.,.,
Smant N
Bullkdings Sman

ndustres

*Figure from Smart Energy Marketplace 8



«c€3c

t f e logyeolt

Unit commitment and dispatch . Y

Power grids of various sizes

Grid operators must deal with solar uncertainty

To do so they use:
ramping of operating generators (|, efficiency)

dispatch operating reserves (M costs)

curtailment (M costs)




Unit commitment and dispatch . »y «c€3c

A system operator example

and en Ironmental changes

As an example, (Martinez-Anido et al., 2016)
0 100+ TWh/y grid in USA (18% PV, biomass, coal, gas, hydro, nuclear)
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Forecast can reduce costs by 1.43 $/MWh

*Figure adapted from original reference 10



Unit commitment and dispatch
Suggested reading
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Grab the low-hanging fruit: use solar forecasting

before storage to stabilize the grid
StevenE. Letendre, October 2014
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Solar plant operators

o Storage & curtailment scheduling for ramp-rate compliance
(Cires et al., 2019)

o Thermal control of CSP plants (Nouri et al., 2020)

Grid operation

o Coping with extreme events, e.g. solar eclipse (Killinger et al., 2016)

Prosumer
0 Load scheduling to M self-consumption (Masa-Bote et al., 2014)
0 Storage scheduling to M self-consumption (Moshovel et al., 2016)
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A few numbers

B e S

14 GW dip
25 GW surge

2015
2 hours

(38 GWp) 700 MW/min

energytransition.org(2015)
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Final remarks . b&b((:EZS(:

Broad range of applications (techno-economic benefit)

o difficult to compare results due to # contexts and regulations

Synergies between forecasting and generator/storage /load
scheduling

Mbehind-the-meter PV: focus shifts to net-load (Haupt et al., 2017)

Cost of forecasting should be considered, e.g. (Cires et al., 2019)
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Self-consumption .

And some “spices”

Storage and demand side management

0 Maximizing self-consumption and/or complying with feed-in limits

0 coordination based on load and PV forecasts
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*Figure from (Luthander et al., 2015) 18
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A prosumer example

and envlronmental changes

As an example, (Moshovel et al., 2016)

O Household in Germany, PV + storage with feed-in limit
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Forecast can reduce costs by up to 2-13 €/MWh

*Figure created based on data from original reference 19
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