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 Variability vs Uncertainty (Ela et al., 2013)

 High PV-penetration study in Arizona (USA)

 Uncertainty is responsible for 2/3 of PV-driven imbalance
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2*Figure from original reference

Motivation for this session

Why solar forecasting



 2015-2020: PhD on solar forecasting

 Read about tons of models, metrics, data sources, etc.

 But what about applications? And added value?

 Scattered references and barely discussed in literature reviews
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3*Figure created in wordart.com

Motivation for this talk

Why solar forecasting value
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A range of applications

The smart grid ecosystem

4*Figure from Smart Energy Marketplace
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Solar plant operators

5*Figure from Smart Energy Marketplace



 Plant operators forecast their generation + bid selling price

 Penalties applied to forecast deviations

 Forecast horizon & penalty mechanism depend on given market
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Market bidding

Utility-scale PV, CPV and CSP
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 As an example, (Antonanzas et al., 2017)

 1.86 MW PV plant in Spain

Forecast can increase margins by up to 3.65 €/MWh
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Market bidding

A PV example
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Grid operators

8*Figure from Smart Energy Marketplace



 Grid operators must deal with solar uncertainty

 To do so they use:

◼ ramping of operating generators (↓efficiency)

◼ dispatch operating reserves (↑costs)

◼ curtailment (↑costs)
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Unit commitment and dispatch

Power grids of various sizes



 As an example, (Martinez-Anido et al., 2016)

 100+ TWh/y grid in USA (18% PV, biomass, coal, gas, hydro, nuclear)

Forecast can reduce costs by 1.43 $/MWh
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Unit commitment and dispatch

A system operator example
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Unit commitment and dispatch

Suggested reading

Grab the low-hanging fruit: use solar forecasting

before storage to stabilize the grid
Steven E. Letendre, October 2014



 Solar plant operators

 Storage & curtailment scheduling for ramp-rate compliance 

(Cires et al., 2019)

 Thermal control of CSP plants (Nouri et al., 2020)

 Grid operation

 Coping with extreme events, e.g. solar eclipse (Killinger et al., 2016)

 Prosumer

 Load scheduling to ↑self-consumption (Masa-Bote et al., 2014)

 Storage scheduling to ↑self-consumption (Moshövel et al., 2016)
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Other applications
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Solar Eclipse

A few numbers
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~ -20 GWh

14 GW dip

25 GW surge

700 MW/min

2015
2 hours

(38 GWp)

energytransition.org (2015)



 Broad range of applications (techno-economic benefit)

 difficult to compare results due to ≠ contexts and regulations

 Synergies between forecasting and generator/storage/load 

scheduling

 ↑behind-the-meter PV: focus shifts to net-load (Haupt et al., 2017)

 Cost of forecasting should be considered, e.g. (Cires et al., 2019)

14

Final remarks
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Thanks for listening! 

Questions? Remarks?

I have some extra slides just in case ☺

Rodrigo Amaro e Silva, rasilva@fc.ul.pt

www.linkedin.com/in/rodrigoamaroesilva/
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Final remarks
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Extra slides16
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(Con/Pro)sumers

17*Figure from Smart Energy Marketplace



 Storage and demand side management

 Maximizing self-consumption and/or complying with feed-in limits

 coordination based on load and PV forecasts
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Self-consumption

And some “spices”

*Figure from (Luthander et al., 2015)



 As an example, (Moshövel et al., 2016)

 Household in Germany, PV + storage with feed-in limit

Forecast can reduce costs by up to 2-13 €/MWh
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Storage scheduling

A prosumer example

*Figure created based on data from original reference
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