

Vertical Grid Load old world

vertical grid load = consumption + production

grey line: vertical grid load

grey line: former vertical grid load

blue line: real wind production

grey line: resulting vertical grid load (+wind)

grey line: former vertical grid load (+wind)

orange line: real solar production

grey line: resulting vertical grid load (+wind +solar)

grey line: resulting vertical grid load (+wind)

red line: Old world vertical grid load without renewables energymeteo.de

Example of decomposition on a substation

Black Measurement of vertical net load
Blue Upscaling wind
Yellow Upscaling solar
Red Residualsignal

→ Do we really know the wind and solar components?

Residual load

Without an optimized distribution of PV and wind proportions

Residual load

With an optimized distribution of PV and wind proportions

Example forecast Vertical Grid Load

vertical grid load = consumption + production = consumption + wind + solar + other production

black: measurement of vertical grid load

red: prediction (3 days ahead) of vertical grid load

yellow: prediction of solar feed-in

blue: prediction of wind feed-in

wind and solar as negative values

... which one is the correct target?

- power forecaster usually predict the actual power, this target is measureable!
- to predict grid congestions, grid operators need the available power (no measurement!)

What would happen if grid operators use the actual power forecast to predict congestions?

... which one is the correct target?

- power forecaster usually predict the actual power, this target is measureable!
- to predict grid congestions, grid operators need the available power (no measurement!)

What would happen if grid operators use the actual power forecast to predict congestions?

→ No future grid congestion visible...

About energy & meteo systems

Company

- Owner-managed since its founding in 2004
- Located in Oldenburg, Germany
- 90 employees (software developers, physicists, meteorologists and industrial engineers)

Services

- Accurate power forecasts for solar, wind and demand
- Market-leading Virtual Power Plant (SaaS)
- Consultancy and R&D

Users

- Transmission, Distribution and Independent System Operators
- Energy trading companies
- Plant operators (IPPs, utilities etc.)

About energy & meteo systems

International business activities

Currently, we are forecasting about 280 GW of wind power and nearly 150 GW of solar power

Choice of our customers

eon

Question: how to manage grid congestions in nodal market

 Possible production is needed to get the possible vertical net load!

blue line: wind power

example: grid congestions mangement in Germany

- grid congestion leads to online curtailment of renewable energies
- day-to-day business in Germany "EinsMan"

 Process will change to planed process (dayahead and intraday) "Redispatch", forecast of vertical net load is essential.for congestion forecast blue line: wind power

energymeteo.de

Reactive vs. Proactive grid congestion management

 a power-flow calculation for future grid states (day ahead) is necessary to identify upcoming grid congestions and be prepared

reactive → proactive

 elementary input for a predictive power-flow study is the prediction of wind, solar and the vertical grid load of all grid connection points

Backup: downregulation of wind power

green line:
 requested target
blue area:
 resulting active power
yellow line:
 available power

State of the Art: Integration of renewable energies

Most important challenges:

- predictability of renewable power feed-in
- remote control of renewables ("downregulation", like Redispatch or EinsMan)
- detection of grid congestions in all grid levels
- European grid operator processes: DACF (Day-Ahead Congestion Forecast)

example: grid congestions

- exemplary limit of transformer station or grid line → 175MW
- two time intervals with grid congestions
- congestion management required!

energy&meteo systems

Vertical Grid Load portal by emsys

Measurement and forecast of Vertical Grid Load

Components of vertical grid load

Small blue dots = wind farms

Big blue dots = substations

Big green dots = remote controllable substations

Grid Operator Control Room

View of Vertical Grid Load components

Selected controllable substation

Planning of Redispatch Actions

-20 MW

Umspannwerk »Flensburg 220/380«

Redispatch refers to interventions in the generation capacity of power plants in order to protect grid line sections from overload.

· Redispatch-Fahrplan

63.06.2019 09:20

Redispatch actions

Potential of Redispatch

Redispatch **Schedule** example

Planning of a Redispatch action to curtail down a wind power plant, e.g. 5 MW down from 09:15 to 09:30, on substation level

energymeteo.de

edispatch-Maßnahme anleger

03.06.2019 09:15

Grid Operator Control Room

Action matrix

Example: Redispatch action of 5 MW down for 09:15 to 09:30

energymeteo.de

Comparison Germany - US

	Germany	USA
Wind measurements of real power	No	Yes
Estimate of real wind power	Yes	Not needed
Estimate of possible power	Yes / No	??
PV measurements all assets	No	No
Standing data PV assets	Yes	No
Estimate of real PV power	Yes	Yes / No
Residual load calculation	Yes	??
Forecast of residual load	Yes	??

What could be improved in many cases in the US (ISO, TSO and DSO):

→ Consider PV estimates in calculating clean residual load signal to get an idea of how much PV is connected to the node and to improve the vertical net load forecast!

And the actual status in the US?

- How to get a clean consumption "measurement"?
 - → Possible power is needed from wind, in the prediction and real production as measurement!
- How to consider PV in the vertical net load?
 - → Either with **PV estimates** or **correlation analysis**

Looking forward to the discussion!!

Needs of grid operators to handle fluctuating energies

- regional forecasts of renewable energies wind and solar at transformer stations
- measurement projection of the available power of renewable energies as a target measure
- vertical grid load forecasts at (e.g.) transformer stations
- detailed state of the grid and future grid maintenance plannings

- power-flow calculation for future timestamps of the complete grid area based on predictions
 of the available power
- ability to downregulate the power feed-in of fluctuating energies
- Re-dispatch with renewable energies ("Energiesammelgesetz") and operating reserve ("MRL") with renewable energies are necessary to operate with a large amount of installed renewables