Probabilistic Resource Adequacy Assessment: Extreme Weather Implications

Gord Stephen PhD Student Renewable Energy Analysis Laboratory Department of Electrical and Computer Engineering

What is Resource Adequacy (RA)?

"A condition in which ... in aggregate, utilities or other load serving entities (LSE) have acquired sufficient resources to satisfy forecasted future loads reliably."

- Northwest Power and Conservation Council

What is Resource Adequacy (RA)?

"A condition in which ... in aggregate, utilities or other load serving entities (LSE) have acquired sufficient resources to satisfy forecasted future loads reliably."

– Northwest Power and Conservation Council

"reliable": defined in terms of some adequacy or risk metric (e.g. planning reserve margin, LOLE)

What is Probabilistic RA?

Probabilistic RA assessments:

> attempt to study a comprehensive (or at least representative) set of possible system operating conditions, and quantify the likelihood of those conditions occurring

What is Probabilistic RA?

Probabilistic RA assessments:

- > attempt to study a comprehensive (or at least representative) set of possible system operating conditions, and quantify the likelihood of those conditions occurring
- yield descriptive statistics for the distribution of possible outcomes (e.g. LOLE, EUE)

What is Probabilistic RA?

Probabilistic RA assessments:

- > attempt to study a comprehensive (or at least representative) set of possible system operating conditions, and quantify the likelihood of those conditions occurring
- yield descriptive statistics for the distribution of possible outcomes (e.g. LOLE, EUE)
- > aren't usually intended to study system adequacy under a predetermined scenario or event ("conditional" resource adequacy), although the same modeling tools can often be used for that purpose

Elements of Probabilistic RA

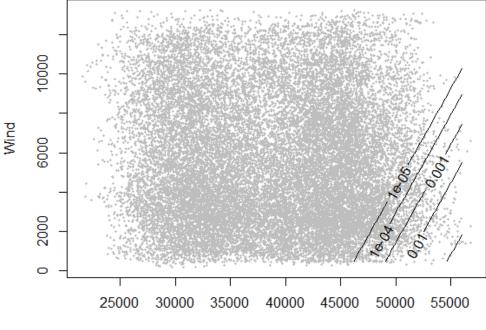
Elements of Probabilistic RA

Typical probabilistic RA analysis

Traditional generator outages are easy to model probabilistically

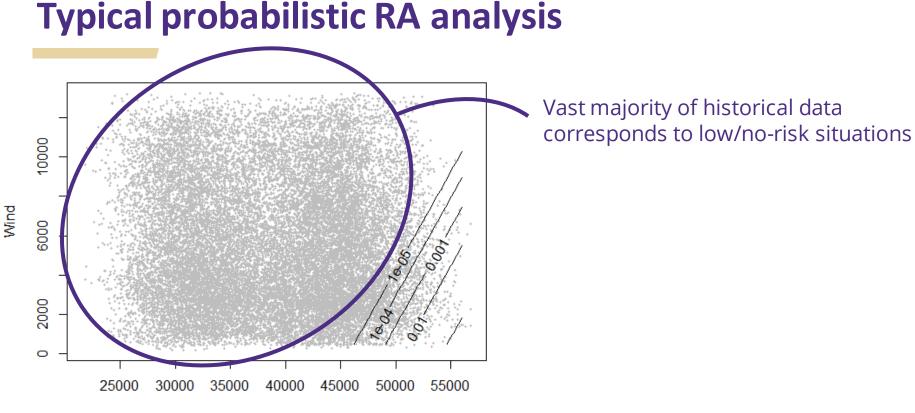
> Been doing this for 60+ years now

Typical probabilistic RA analysis

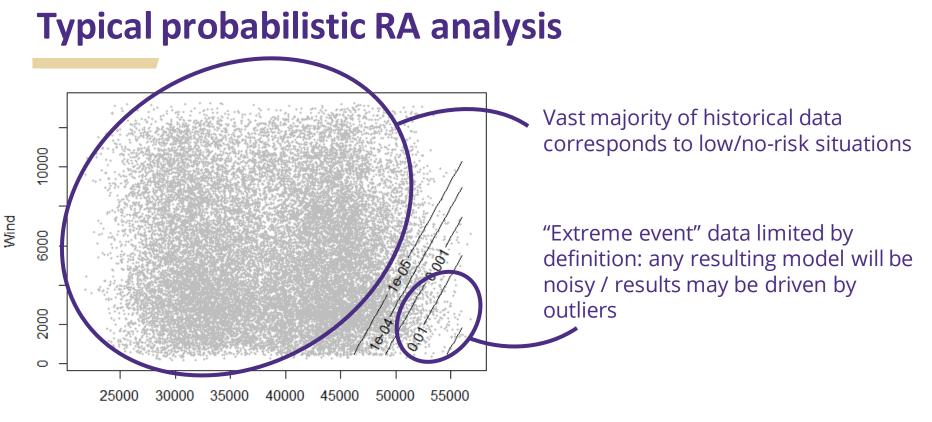

Traditional generator outages are easy to model probabilistically

> Been doing this for 60+ years now

Load and variable resources are hard to model probabilistically


- > Need serially-correlated, hourly probabilistic forecasts, years or decades in advance (!)
- > Typical approach: assume future resembles historical load + weather
 - Pros: simple, transparent
 - Cons: limited data available (especially for risky periods of interest)

Typical probabilistic RA analysis


Demand

Wilson and Zachary, "Using extreme value theory for the estimation of risk metrics for capacity adequacy assessment", 2019. https://arxiv.org/abs/1907.13050

Demand

Wilson and Zachary, "Using extreme value theory for the estimation of risk metrics for capacity adequacy assessment", 2019. https://arxiv.org/abs/1907.13050

Demand

Wilson and Zachary, "Using extreme value theory for the estimation of risk metrics for capacity adequacy assessment", 2019. https://arxiv.org/abs/1907.13050

Just use more historical data

- > Useful for capturing interannual variability
- > Difficult to normalize for load growth / shifts in underlying consumption patterns

Just use more historical data

- > Useful for capturing interannual variability
- > Difficult to normalize for load growth / shifts in underlying consumption patterns

Fit a statistical time series model

- > Can draw unlimited samples!
- > Lots of new and likely-subjective assumptions involved
- > Model is still only as good as the (limited) training data

Extrapolate tail events via Extreme Value Theory

- > Same shortcomings as any other statistical model
- > May be better suited than traditional models for the events of greatest interest in RA applications

Extrapolate tail events via Extreme Value Theory

- > Same shortcomings as any other statistical model
- > May be better suited than traditional models for the events of greatest interest in RA applications

Communicate uncertainty arising from data limitations

- > If there's no easy fix, at least be transparent about the problem
- Statistical bootstrap methods can help quantify potential impact of limited event data

Elements of Probabilistic RA

Elements of Probabilistic RA

Popular RA risk metrics are based on expected outcomes

- > LOLE: Average total count of periods with dropped load
- > EUE: Average unserved energy
- > Extreme events considered, but impacts are attenuated due to lower likelihood of occurrence

Popular RA risk metrics are based on expected outcomes

- > LOLE: Average total count of periods with dropped load
- > EUE: Average unserved energy
- > Extreme events considered, but impacts are attenuated due to lower likelihood of occurrence

Do we only care about "average" outcomes?

- > "How bad could it get" seems like a reasonable question to ask
- > Should we also be using tail metrics such as CVaR (expected value in worst x% of outcomes)?

> Lack of data around extreme weather events makes probabilistic RA assessment hard

- > Lack of data around extreme weather events makes probabilistic RA assessment hard
- > We need to improve extreme event characterization in RA models

- > Lack of data around extreme weather events makes probabilistic RA assessment hard
- > We need to improve extreme event characterization in RA models
- > We need to quantify the potential impacts of our data limitations

- > Lack of data around extreme weather events makes probabilistic RA assessment hard
- > We need to improve extreme event characterization in RA models
- > We need to quantify the potential impacts of our data limitations
- > We should consider RA metrics that communicate the possibility of extreme events

Stay in touch!

Gord Stephen gords@uw.edu

