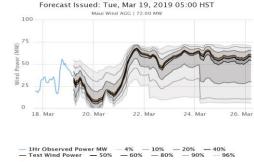


Meteorology and Market Design for Grid Services Workshop Online Webinar Session June 25,2020

IEA Wind Recommended Practice on Renewable Energy Forecast Solution Selection

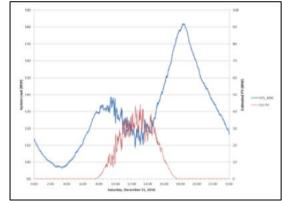
John W Zack and Corinna Möhrlen john.zack@ul.com com@weprog.com


Overview

- Motivation
- Structure of IEA Recommended Practices for Forecast Solution Selection
- Key Points in Each Component Document
- Where to Get More Information

The Issue

- Documented Benefits: Use of forecasts to assist in the management of the variability of wind-based (and solar-based) generation can lower variable generation integration (system) costs while maintaining the required high system reliability
- Problem: A substantial amount of the potential value of forecasting is not realized due to the use of non-optimal forecast solutions by users
 - Specification of the wrong forecast performance objective(s)
 - Poorly designed and executed benchmarks/trials of alternative solutions
 - $\circ~$ Use of non-optimal evaluation metrics for forecast evaluation

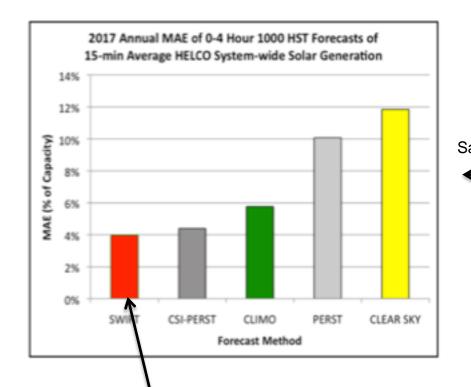


Misaligned Forecast Objectives: An Example from the "Big Island" of Hawaii WHAT THEY REQUESTED VS. WHAT THEY NEED

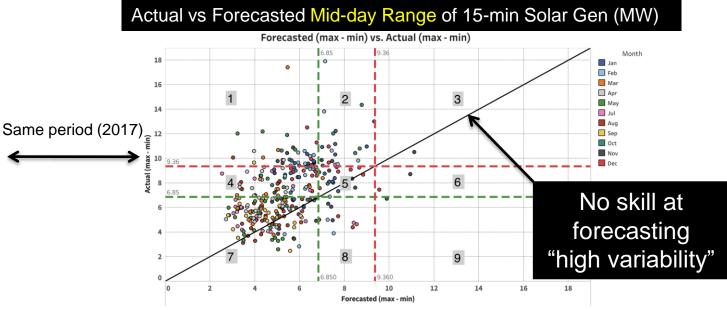
REQUESTED: 0-6 hr forecasts that minimize the squared error for every 15min interval

- Produced from multi-method (NWP, statistical, satellite cloud advection) forecast ensemble
- Two Forecast Time Frames
 - \circ Intra-day
 - 0-6 hrs ahead in 15-min time steps
 - 15-min updates
 - $\,\circ\,$ Multiple Day
 - 0-7 days ahead in 1-hr time steps
 - 1 hr updates
- Resulting Forecast Attributes: phase and amplitude errors in small scale cloud features at 15-min scale force squared error optimization to create a smooth forecast (minimal temporal variability)

Issue: large mid-day net load variability driven by distributed PV variability


- Adequate ramping capability must be available with the online units to ensure that the system frequency doesn't go too high or too low
- Key Question: What will be the optimal mix of online and offline (quick-start) ramping resources for the midday period?

NEED: Mid-day (1000-1400) range of variability forecast (not necessary to have each 15-min period correct – just the generation envelope)


Misaligned Forecast Objectives: An Example from the "Big Island" of Hawaii THE RESULT

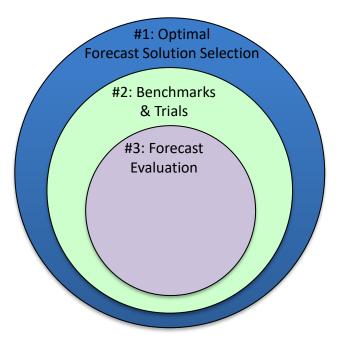
Mean Absolute Error (or RMSE) looks good!

MAE for 0-4 hr forecasts for mid-day period is 4 % of Capacity and 15% lower than "smart persistence"

Count	Forecasted				
Observed	Category	Low	Moderate	High	Obs %
	High	40	21	1	20.0%
	Moderate	72	20	2	30.3%
	Low	143	10	1	49.7%
	Forecast %	82.3%	16.5%	1.3%	100.0%

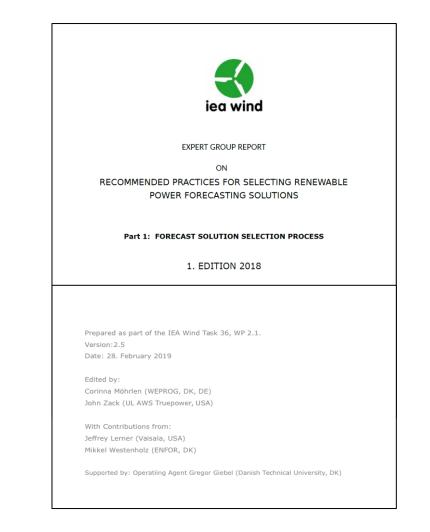
To Address this Issue: International group of experts have interacted under the framework of IEA Wind Task 36 to formulate a set of documents that specify the "best practices" for selecting a renewable energy forecasting solution......

Structure of IEA-WIND Recommended Practice For Forecasting Solution Selection

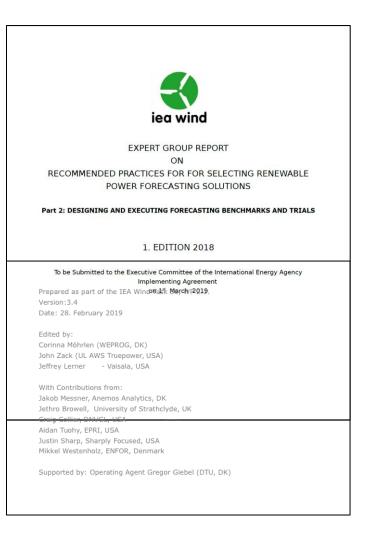


Target: Compile guidance for the implementation of renewable energy forecasting into system operation

Approach: Develop a set of 3 documents that specify IEA Wind Recommended Practices for:


- **1. Selection of an Optimal Forecast Solution**
- 2. Design and Execution of Benchmarks and Trials
- **3. Evaluation of Forecasts and Forecast Solutions**
- Current Status: Accepted by IEA Wind ExCo & published

The best practices guidelines are based on many years of industry experience and are intended to achieve maximum benefit for all parties involved in the forecasting area. **Recommended Practice page :**http://www.ieawindforecasting.dk/Publications/RecommendedPractice


Part 1: Selection of an Optimal Forecast Solution

- Presents an overview of the factors that should be considered in the solution selection process
- Discusses the issues associated with each selection factor
- Provides a "decision support tool" to assist users in the design and execution of a solution selection process
- Provides practical lists and FAQ's for the RFI/RFP tendering process

Part 2: Conducting a Benchmark or Trial

- Presents the three phases of a forecasting benchmark or trial
 - Planning
 - Execution
 - Analysis
- Discusses the factors and issues that should be considered in each phase
- Provides a list of pitfalls to avoid

Part 3: Evaluation

- Presents the three key attributes of an evaluation process
 - Representativeness
 - Significance
 - Relevance
- Discusses the factors and issues that should be considered for each attribute
- Provides recommendations for conducting a high quality and meaningful evaluation

RP-related Plans for Phase 2: 2019-2021

- Increase awareness of the availability of the RP documents
- Obtain feedback on the usefulness of RP from the community
 - Key objective: get feedback from new or inexperienced forecast users (individual or organizations) as well as other users and industry stakeholders
 - RP component in Task 36 Open Space workshops held at WIW-2019 & ICEM-2019
 - Presentation of RP overview at several industry gatherings in 2020 & 2021
 - Conduct a dedicated RP workshop in 2021
- Expand the Scope of the RP documents
 - Include material on probabilistic forecast use and evaluation
 - Include more examples of issues and solutions
 - discuss with us, if you have suggestions not covered

Where to Get More Information

IEA Wind Task 36 Session Topic 4: Request for Feedback on Version 1 of the Recommended Practices for Forecast Solution Selection

John W Zack AWS Truepower, a UL Company Albany, NY, USA John.Zack@ul.com

Corinna Möhrlen WEPROG National Renewable Energy Laboratory Assens, Denmark com@weprog.com Caroline.Draxl@nrel.gov

Caroline Draxl

(NREL)

Golden, CO, USA

RP-related Publications

RP

Documents:http://www.ieawindforecasting. dk/Publications/RecommendedPractice

2019 Wind Integration Workshop (Dublin)

Paper in Proceedings Presentation

2019 ESIG (Denver)

Presentation

YouTube Channel Webinar on Recommended Practices

Task 36 Information

\rightarrow Task 36 site

- ieawindforecasting.dk
- → Research Gate Project
 - www.researchgate.net/project/IEA-Wind-Task-36-Wind-Power-Forecasting

\rightarrow IEA Wind Forecasting YouTube Channel:

www.youtube.com/channel/UCsP1rLoutSXP0ECZKicczXg

