

## Improving Irradiance Forecast Accuracy Marc Perez, Ph.D.

ESIG 2019 Meteorology & Market Design for Grid Services Workshop June 4-6, 2019





## Agenda

## 



## The SUNY Solar Forecast Model



© Perez & et al.

## Performance Evaluation



#### 7 SURFRAD Network Sites – 10 months of hourly data

#### Site-independent "out-of-the-box" model

Kt\* persistence

"SUPER-SMART" PERSISTER HarAnywhere V4



### Site-independent "out-of-the-box" model SolarAnywhere V4 x



### Site-indepeterfortæftlyet-broæd model SolarAnywhere V4 x



#### Site-specificity

Tuned with ground measurements Direct applicability: forecasts for monitored systems

#### Site-specific Soteally etcifie bloc ally stumered model

SolarAnywhere V4 x



## Site-specificity Tuned with **groam** chynelastreenisentiscal?



### Goodwin Creek: 3 hours ahead



Existing V4

### Forecast - Skill

 $-\frac{RMSE_{Model}}{RMSE_{Smrt.Persist.}}$ 



## EPRI forecast trial DAY-AHEAD MAPE

#### SINGLE POINT – i.e., one single power plant SolarAnywhere V4x



13 Models/vendors

#### **REVGGOENPAOIRVT FLEET**, one single power plant



#### Existing V4

#### Site-specific V4x (ground) <u>Site-specific V4x (Satellite)</u>





### **Geographic Tuning Specificity**



## Agenda

## 



# 3 Valuation Methodologies

| Methodology                    | Detail                                                                                                                                                       |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resource Adequacy              | Cost of capacity linked to standard deviation of forecast errors                                                                                             |
| Real-Time Market<br>Correction | <ul> <li>Implementation of ITRON's existing error valuation method, based largely on:</li> <li>LMP for day ahead</li> <li>up/down –reg for day of</li> </ul> |



Storage quantity (kWh) and cost (\$) required to mitigate forecast errors across different timescales both nominal and levelized per kWh delivered



## Can we quantify the *value* of such improvements?







- The <u>**Perfect Forecast**</u> methodology calculates the storage required to mitigate overprediction events across a given timescale.
- This storage has a cost \$ which depends on forecast accuracy.
- Δ\$ gives relative value allowing us to assess accuracy improvement in \$ terms.



### How does the Perfect Forecast Work?







### How does the Perfect Forecast Work?



Actual Irradiance, August 3rd





V4 Hour Ahead Forecast









#### Storage State-of-Charge





Storage State-of-Charge









#### What is the value of improving our forecast?



Tuning to Tighter Geographic Regions



Tuning to Tighter Geographic Regions

#### How does the forecast error change with geographic extent?



Tuning to tighter geographic regions

#### What about with Time Horizon?



Tuning to Tighter Geographic Regions

#### What about with oversizing + curtailment?



Tuning to Tighter Geographic Regions

#### What about aggregate value for all BTM PV across CA?



Tuning to Tighter Geographic Regions

### Concluding Remarks

- Presented an improved siteindependent "out-of-the-box" forecast model operational anywhere in North-America.
- Presented evidence of substantial further performance improvement achievable with localized model tuning from measured operational data.
- Showed that a sizeable fraction of this additional site-tuned performance improvement could be incorporated in the "out-of-thebox" model by mining historical SolarAnywhere irradiances.

- Showed three examples of improved site tuning using more or less aggregated data
- Demonstrated the novel "Perfect Forecast" valuation methodology
- Applied this valuation methodology to each of the new forecasts investigated.
- Showed how value changes based on forecast horizon and with the use of oversizing + curtailment.

## Thank you



