

Using Wind Plant Production Changes to improve Neighboring Plant Forecast

ConWX ApS

June, 2019

ConWX history – how it all started

Dec 2008

ConWX founded by Jesper Thiesen & Erik Østergaard Madsen – with 20+ years experience in the field

First products:

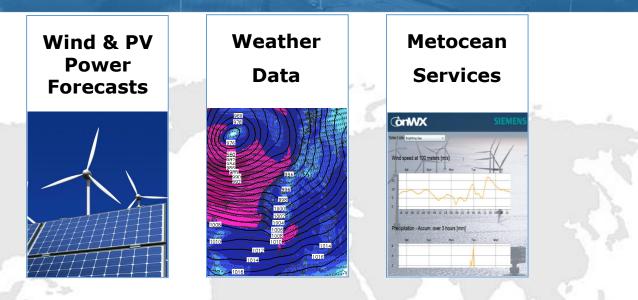
MetOcean/O&M; hindcasts

Followed by NWP and data modelling

TODAY:

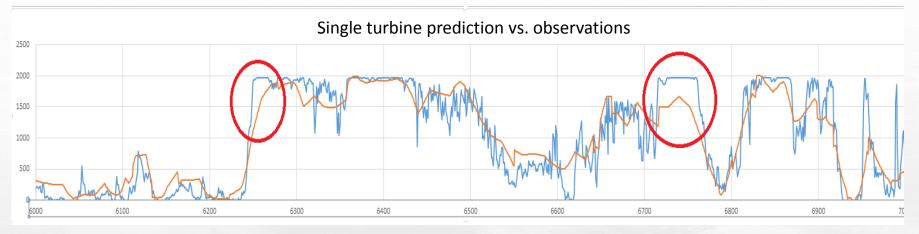
A large range of products

Global customer outreach


Main focus: wind & PV power production forecasts

Team of 30 – in Denmark and Serbia

ConWX products

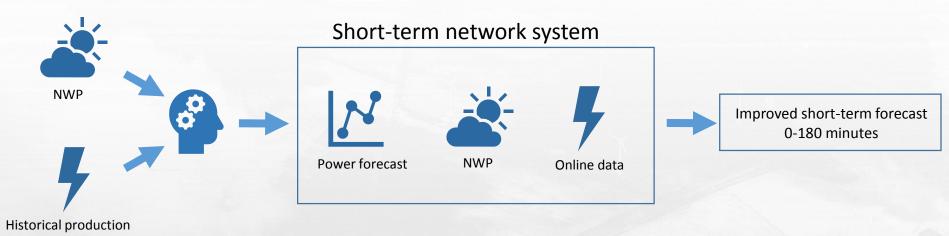

- □ Wind and PV **power production forecasts** on single unit, park, portfolio, region & country level ID, DAH+, middle and long term, incl. energy briefings and long term renewable reports
- Direct forecasting responsibility for +110GW Wind and 6GW PV globally
- □ Historical, statistical weather data for **site assessments** and data validation
- □ Advanced 5-10 days **offshore weather**, waves and current forecast for any global position; incl. routing forecast, lightning warnings and weather reports

Your power is to know

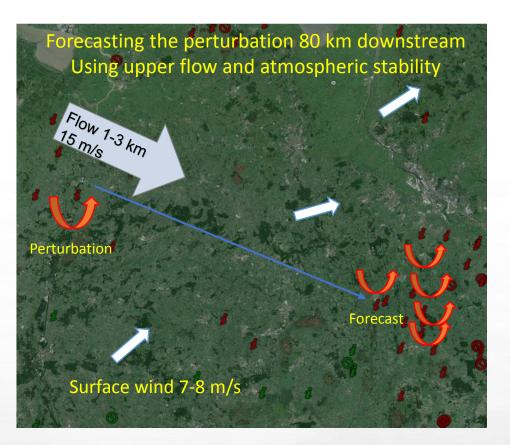
Short Term Forecasting Challenges

There are numerous challenges in short term power forecasting:

- Online data has very limited durability
- +90 minutes NWP are in general better
- Data 15 minutes delayed and 45 minutes to market gives a delay up to 60 minutes
- Online data often represents only the local production
- Perturbation spread depends on topography, atmospheric stability, wind speed and system flow
- No online wind speed measurements at hub-height


Figure; Typical prediction. Blue is observation, orange is prediction and the red circles indicate large differences in observation and prediction for a single turbine

Short Term Network System


Making the most of data already available across a portfolio

Necessary input data:

- Numerical weather prediction data (ConWX & External)
 - Wind speed, wind direction, pressure
- Wind power forecast (ConWX)
- Historical production data (Client)
- Online data for selected sites (Client)

How we optimize on Short Term

Uncertainties and challenges in forecasting perturbations:

- Surface wind is not representative for the perturbation movement
- Winds in 1.5-10 km transport the changes
- Is the perturbation local or regional?
- Damping or growing perturbations?
- The influence of atmospheric stability?

Short Term Network System Methodology

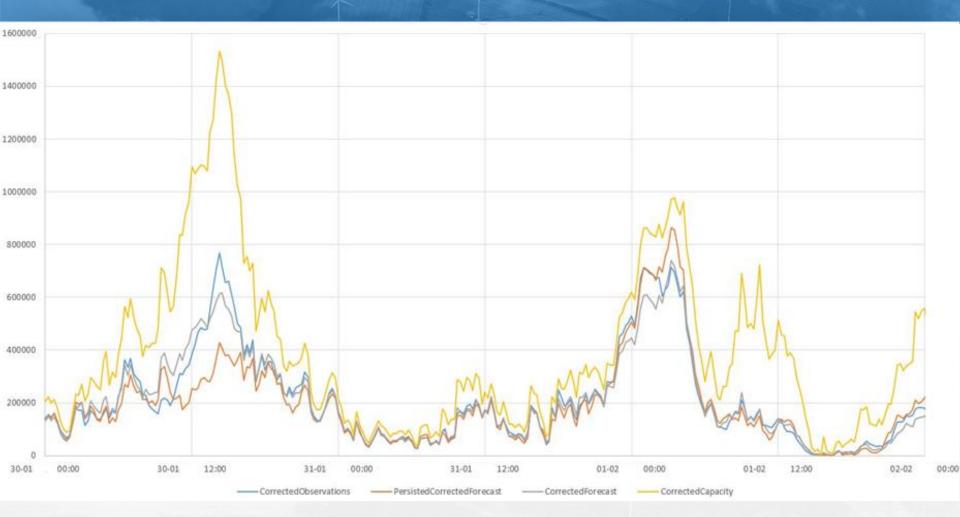
Method steps:

- Frontal passage detection for individual plants
 - <u>Fronts</u> = Zones of transition between two different air masses, with different characteristics including: temperature, wind direction, density and dew point
 - <u>V-shape detection</u> = Detection of a passing front done by analysing the difference in modelled wind direction over a moving window
- Calculate bias between modelled power and online data over the analysis period
 - Frontal passage errors in forecast magnitude and timing (ramps)
 - Select parks where the error value is greater than an imposed threshold and for which the <u>detection</u> of a passing front conditions are satisfied
- Cross-correlation of detected fronts
 - Front tracking = For neighbouring parks with detected fronts, calculate angular correlation of the modelled wind direction and pressure difference => Detect influence list for a park
 - <u>Influence list</u> = neighbouring parks that can be corrected using the information from the selected park
- Down-stream short-term calibration
 - <u>Correct NWP predicted power</u> for down-stream parks (parks in the influence list) based on parks upstream
 - Correction is applied using with damping depending on scenario and distance/time

Short Term Network System Improvements

Improvements

- With the selected parameters configuration, the method is active for **10-15% of the** events in a year
 - Events with discrepancies in magnitude and timing (ramps) between online data and NWP predicted forecast
- Improvements calculated based on comparison with the traditional short-term calibration approach
- Evaluated on +60 to +120 minutes from forecast issued time


Portfolio size	Overall improvements
1 GW	20%
6.5 GW+	25%

Table; Improvements obtained using STNS for different portfolio sizes

Advantages

- Improved plant level and aggregated short term forecast (0-180 minutes) in highcost situations
- Improved use of online data in situations of low online data availability

Example Large portfolio (7GW) - Cold front

Figure: Short term improvements for a portfolio (blue: measured production, grey: STNS forecast, red: old forecast and yellow: corrected capacity)

Thank you!

Anamaria Marta Sabau

as@conwx.com