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Wind Power Forecasting at NCAR

Xcel Energy System (2008-2011)

Xcel Energy has used WindWx since 2009, which was developed

through a multi-year R&D project

Provides forecasts every 15-min over Xcel Energy’s entire service territory

Xcel estimated $60.6M in fuel cost saving through end of 2015 through

WindWx*

Center Data

NAM, GFS, HRR,
RAP, ECMWF, GEM

WRF RTFDDA

System I
Ensemble

System

Met towers
Wind profiler
Surface Stations
‘ Windcube Lidar

* https://www.xcelenergy.com/staticfiles/xe-responsive/Company/Corporate%20Responsibility%20Report/16-03-341-Wind-Energy.pdf
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Wind Power Forecasting at NCAR

Xcel Energy System (2008-2011)

+ DICast uses machine learning to post-process NWP model output and
has generally shown to improve error by 10-15% from 1-hr to 72-hrs

Weighted average RMSE 12z hub-hgt-wind-speed forecasts for 20100901-20101231 for all XCEL sites
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Solar Power Forecasting at NCAR
DOE SunShot Solar Project

+ DOE SunShot sponsored solar power forecasting project led by NCAR in
2012-2015 advanced the state of the science for solar power forecasting
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Haupt et al, 2018: Building the Sun4Cast System: Improvements in Solar Power Forecasting. Bull. Amer. Meteor. Soc., 99, 121-136, https://doi.org/10.1175/BAMS-D-16-0221.1



https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-16-0221.1
https://doi.org/10.1175/BAMS-D-16-0221.1

Solar Power Forecasting at NCAR
DOE SunShot Solar Project

+ DOE SunShot sponsored solar power forecasting project led by NCAR in
2012-2015 advanced the state of the science for solar power forecasting
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Recent Advancements

Machine Learning for Renewable Energy Prediction

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural

networks learn from
vast amounts of data

https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55




Recent Advancements

Artificial Neural Networks

Machine learning method modeled after neurons in the human brain.
Each predictor is mapped to every neuron in a hidden layer, which is
mapped to the output layer that makes the final prediction.
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Recent Advancements

Artificial Neural Networks

Machine learning method modeled after neurons in the human brain.
Each predictor is mapped to every neuron in a hidden layer, which is
mapped to the output layer that makes the final prediction.
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Recent Advancements

Artificial Neural Networks

Back-propagation training iterates over the samples and computes the
error, or cost, of the prediction. Each weight and bias is tuned by gradient
descent to lower the error. Goalis to find the global minima in cost function
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Recent Advancements

Causal Discovery and Regime-Dependent Methods

Causal Discovery RD-ANN Methods

Cloud or
Wind
Regimes

Solar or Wind

Predictors
Power

“...causal discovery is always a process that involves both domain
experts and Al experts, working together*”

*Imme Ebert-Uphoff, Colorado State University, https://www.engr.colostate.edu/~iebert/




Recent Advancements
Regime-Dependent Methodology

Mission Statement:

Combine knowledge of key fundamental drivers of the underlying
meteorological phenomena with artificial intelligence techniques to
Improve renewable energy prediction

Cloud Types Solar Irradiance Regimes

Boulder (TBL) Avarage Daly kradiance




Recent Advancements
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Recent Advancements

Regime Classification with K-Means Clustering

Goal: statistically classify regimes specific to forecasting solar irradiance

K-Means clustering minimizes the variance within clusters
and maximizes the variance between clusters
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Recent Advancements
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Recent Advancements

Results for Most Challenging Weather Regimes in Sacramento, CA

SMUD: RD-ANN Percent Improvement Over Smart Persistence
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improvement the RD-ANN trained to predict the

‘I 8.6% variability (standard deviation) had over smart
persistence by compared to an ANN at 13.7%

McCandless, T.C., G.S. Young, S.E. Haupt, and L.M Hinkelman, 2016: Regime-Dependent Short-Range Solar Irradiance
Forecasting, Journal of Applied Meteorology and Climatology, 55, 1599-1613.




Recent Advancements

Regime-Dependent Methodology for Wind Power Forecasting

Kuwait
Location of KISR Wind Farm
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+ Current ANN implementation
+ 1 hidden layer with 10 neurons

Recent Advancements

Regime-Dependent Methodology for Wind Power Forecasting

+ Predictors include
3-hr fime series of wind speed or power observations
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Recent Advancements

Machine Learning for Renewable Energy Prediction

Standard Methodology

Data .

NCAR Methodology
Data quality Artificial Neural Multi-Stage: first Define relevant
control, define Networks of predict cloud metrics:
additional various regime, then MAE, RMSE
predictors complexity and predict the separated by
relevant for optimal predictor iradiance (or cloud regime
predictand selection solar power)
NCAR Scientists, NCAR Machine NCAR Subject Matter M bstetia
Software Engineers Learning Scientists Experts and 'Domoln STOTISTI.QOHS and
Expertise Metrics Team




Motivation for Battery Optimization

Potential Customization of Solar and Wind for Optimizing Battery Usage
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Motivation for Battery Optimization

Potential Customization of Solar and Wind for Optimizing Baftery Usage

Ideal Battery Charge/Discharge

+ Optimally
charge and
discharge for
both:

+ Demand charge
reduction

+ Reducing net
load (esp for TOU
rates)
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Motivation for Battery Optimization

Solar Power Forecast Display

Combing machine learning based DICast prediction with machine
learning analog ensemble for uncertainty quantification
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Motivation for Battery Optimization

Wind Power Forecast Display

Combing machine learning based DICast prediction with machine
learning analog ensemble for uncertainty quantification
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Lessons Learned and Next Steps

Summary and Potential Future Work

+ Improvement in solar power forecasting accuracy via machine learning for
short fimescales of minutes to hours
+ Potential for gaining more customer services from batteries by
integrating solar forecasts with battery storage optimization
+ Customized solar power prediction to be specific fo charging and
discharging a co-located battery

+ Site-specific solar forecasts may be more important for solar +
sforage

+ Af the ufility scale, there are multiple ancillary services where short-term
power fluctuations significantly matter (reliability, regulation, voltage

control) and predicting solar variability directly may add value for utility
scale solar

+ Moving from 15-min fo 5-min resolution
+ Adding probabilistic information

+ Could allow utility scale battery to provide more ISO/RTO services
by understanding expected short-term variability
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