

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

German Grid Code Compliance Assessment Practice

Prof. Dr.-Ing. Jens Fortmann

San Diego, Oct. 24th, 2023

htu. Germany's transition to renewable electricity generation

- Rapidly increasing share of renewable energy sources (RES) in total installed capacity and generation
 - around 50% of gross electricity consumption in 2022
 - mostly inverter based resources (wind and solar)
 - Substituting coal and gas based conventional power plants

With RES goal of at least 80% in electricity generation by 2030

RES must verifiably be capable of providing:

- Frequency stability
- Voltage stability
- Ride-through capability
- Capability to survive systems splits / islanding (new!)

in an inverter based resources dominated grid

with little remaining synchronous generation for extended periods of time

htu. Germany's approach to Grid code compliance verification

¹FGW e.V. – Fördergesellschaft Windenergie und andere Dezentrale Energien

Government supported 3rd party verification & certification

- Verification of compliance with grid codes and government RES grid support incentives
- Independence, impartiality, transparency
- Competency and quality verified by accreditation
- Risk reduction for manufacturers, plant developers/operators and TSO/DSO
- Reduction of interconnection process times and costs

htu. FGW 3-Step Compliance Assessment Process

für Technik und Wirtschaft Berlin

htu. Conformity assessment Power Generation Unit

duration: 6 - 12 month \$23 ESIG Fall Technic 的 如果 中国 Pall The Philipper Morkshop

htu. Broad range of assessment methods for plant certification

The **unit certificate** as a basis for plant assessments:

Hochschule für Technik und Wirtschaft Ber

Mark Meuser: Grid code compliance verification acc. TR8. Approach Rationale Experiences. Presentation at IEEE P2008.2 WG. FGH Zertifizierungsgesellschaft mbH. April 2023.

htu. Grid Fault Measurement according to FGW und IEC

chschule für Technik und Wirtschaft Berlin

Example: Voltage Dip

Standardized procedures / quantitative approach: detailed and aggregated plant model

Detailed plant model – need for grid connection approval

- Most grid code requirements apply to the plant connection point
- Model based on validated unit models. Plant controller and compensation need separate validated models.
- Grid code requirements and plausibility checks are performed.
- No comparison to measurements at plant level.

Aggregated Plant Models – for system studies (can be demanded by grid operator, but not used so far)

- Based on unit model.
- All evaluations are at the plant connection point
- Active and reactive power reference changes
 - Response to voltage and frequency changes, protection
 - Comparison to detailed (validated) plant simulation model (100 ms step size + 10 sec moving average filter)
- Balanced and unbalanced FRT
 - Response to voltage dips

htu. Emerging requirements and use of EMT-Models

- For long, FGW TG4 required only RMS-Models.
 - Registry of FGW Certificates available at: <u>https://wind-fgw.de/database/?lang=en</u>
- In the latest release of TG4 (V10), EMT-Models have been added.
- EMT-Models are required:
 - ▶ If RMS-Model are not valid for short circuit ratios < e.g. 3
 - SCR-Ratio will decrease open issue!
 - For offshore wind plants connected via HVDC
 - For locations of wind plants close to HVDC-stations
 - For the evaluation of frequencies above 5 Hz (if needed)

Differences to U.S. approach:

- Evaluation of negative sequence protection settings uses negative sequence RMS models
- Evaluation of negative sequence could be based on negative sequence loadflow-models as well

htu. Backup Slides

Hochschule für Technik und Wirtschaft Berlin

htu. Standardized procedures / quantitative approach: limitations

Standardized procedures + quantitative approach

- Aims to provide transparent and comparable criteria for evaluation
- Cost and time efficient, allows automated evaluation
- De-risking for manufacturer, plant operator & TSO/DS=

Limitations

- Definition of "transient" areas that can be excluded due to limitations of the applied positive sequence (RMS) models to some extent arbitrary
- Model limitations
 - Fault currents difficult to model especially for DFIG- Turbines
 - Transformer saturation not handled by RMS-models
 - Post-fault active power recovery can be impacted by wind speed changes -> some expert opinion necessary
 - Post-fault active power changes due to eigenfrequency of drive train are difficult to model accurately (depends on pitch angle, fault conditions,...)

htu. Different Focus of RMS and EMT-Models WECC - FGW

Joint Work in WECC 2nd generation models and IEC 61400-27

- Generic models available from WECC and IEC
- Manufacturer specific positive (and negative) sequence models usually used in Germany

Different focus of RMS models WECC/IEEE and FGW/IEC

WECC /USA:

- slightly simpler version of the models for system studies
- measurement of operating plants, evaluation of fault events
- Validation based on <u>expert opinion</u>

IEC/Europe:

- slightly more detailed models for <u>connection studies</u>, <u>model validation based on</u> <u>measurement</u>
- measurement of FRT-tests of unit
- Validation based on <u>standardized procedures</u> (unit model only, no validation of plant model)
- Plant Model based on validated unit model, for connection studies

Different focus of EMT models WECC/IEEE and FGW

- IEEE 2800/.2: Paradigm change in U.S. towards more plant conformity assessment using models
- ▶ WECC: negative sequence evaluation for connection studies
- ▶ FWG: connection studies for HVDC-connected units

htu. Standardized procedures / quantitive approach: unit models

Unit models

 All evaluations at the turbine terminals (LV or MV at manufacturers choice). Some grid code requirements - like reactive current ramp rates during FRT - apply to the unit terminals.

Unit models - normal operation

- Active and reactive power capability diagram (PQ)
 - Comparison to measurements, (steady state)
- Active and reactive power reference changes
 - Comparison to measurements (<10ms + 15 sec moving average)
 - Different acceptance criteria for transient periods and steady state operation
- Response to frequency changes
 - Comparison to measurements (internal frequency ref. change)

Unit models – FRT

- Active and reactive current response to voltage dips
- balanced & unbalanced faults, evaluation of positive & negative sequence currents.
 - Comparison to measurements (<10ms + 15 sec moving average)

FGW TG4 & IEC 61400-27-1 Positive and negative sequence representation

In order to compare measurement and simulation, the positive (and if required: negative) sequence of measurement values (voltage, current) is compared to the equivalent (filtered) RMS simulation value.

German Validation Standard FGW TG4: transient and stationary periods

Voltage dip, example of voltage, reactive power and active power 90% Measurement IVAI */t Simulation tansient tationary ansien ationarv ransien C3 C1 r B1 r B2_r C2 r onary stationary transient transien B2 a B1 a C1 a C3 C2 a

The measured event is divided into transient and stationary periods

Note that IEEE P2800.2 is currently not aiming for quantitative pass/fail criteria - but engineering judgement.

Prof. D. .-Ing. Jens Fortmann

htuu

Validation Example: balanced fault 1. comparing measurement and simulation

- Comparison of measurement and simulation of reactive currents of a balanced voltage dip down to 45 % rated voltage.
- The reactive power is changed as the voltage changes.
- Transient periods are highlighted with red color, steady state periods green

Validation Example: balanced fault 2. Calculating averages of transient and stationary ranges

htuu

Calculation of averages for steady state and stationary ranges for measurement (subplot 1) and simulation (subplot 2)

Validation Example: balanced fault 3. Comparison of averages and positive sequence

նեսա

- Calculating the difference of
 - average values (subplot1) and
 - positive sequence values (subplot 2)
 - of measurement and simulation (blue) compared to allowed limits (red)

