



Grid Forming Technology Implementation Council Status and Outlook

Sten Arendt Stoltze SVP Engineering | Ørsted Chair, GFMIC

September 26, 2023

Global Power System Transformation Consortium advances action in 5 key areas

REGIONAL LEADS – Coordinate regional peer learning networks and country-level TA delivery efforts for Africa, Asia, and Latin America and the Caribbean

GPST Goal Enablers & Implementation

Goals: Enable Operation of a 100% IBR Transmission System by 2025 or other regional goals

Enablers to achieve SO goals

- Clear definition & adoption of new system needs & services framework
- Advanced techniques to define and ensure resource, energy and flexibility adequacy
- Deployment of advanced technology capabilities (e.g., GFM) to meet grid needs & provide services
- Refined stability tools, models, methods & metrics
- Advanced operational capabilities (e.g., control room of the future)
- DER architecture, operation & impact

Implement via top projects

- 1. System Needs & Services Implementation Council
 - NGESO Pathfinder project expansion
- 2. Resource Adequacy & Integrated Planning Implementation Council
 - Next-gen RA & planning tools
- 3. Grid Forming Inverters: GFM Implementation Council
 - GFM field test & demonstrations
 - Cross-cutting standards development & technology adoption
- 4. Stability Tools, Models & Data Implementation Council
 - Stability Tools for 100% IBR
 - Improved accuracy of phasor and EMT tools & models
 - Open-source tool development/data interoperability
- **5. CROTF Implementation Council**
 - Advanced operational capabilities
- 6. Distributed Energy Resources Implementation Council
 - DER system architecture & tool development

KEY GFMIC INITIATIVES

PURPOSE - Break the chicken-egg cycle through deployment and commercialization of GFM technology by:

- a) identifying GFM features/requirements by system operators
- b) supporting technology demonstrations and deploying GFM resources from OEMs
- c) GFM resource procurement by developers
- d) Standardization, codes and interconnection requirements

METHOD - Collaboration with SOs, project developers, OEMs, software developers, standardizing institutions and other stakeholders on field tests, demonstrations, standards and codes, and dissemination

CONFIRMED & POSSIBLE PARTICIPANTS:

Developers			
\checkmark	Ørsted		
\checkmark	Enel		
\checkmark	Invenergy		
\checkmark	Zenobe		
\checkmark	Nextera		
	Iberdrola		
	EDF RE		
	E.ON		
	Acciona		

Sy	System Operators				
\checkmark	NG ESO	✓	Amprion		
\checkmark	AEMO	\checkmark	Elia		
\checkmark	ERCOT	\checkmark	50 Hertz		
\checkmark	Energinet	\checkmark	TenneT		
\checkmark	Eirgrid	\checkmark	ENTSO-E		
		1			

✓ FinGrid
 ✓ CAISO
 ✓ CEN

<u>O</u>	<u>EMs</u>
\checkmark	GE
\checkmark	Smartwires
\checkmark	Siemens
\checkmark	SGRE
\checkmark	Hitachi Energy
	SMA
	Mitsubishi
	Toshiba
	Vestas

Tesla

Software developers

DigSilent GE Siemens PTI Manitoba Hydro EMTP Power World PowerTech Labs

GFM Implementation Council Tasks & Timeline

2023 - 2025

- Define GFM services
- Identify at least 5 GFM technology demonstrations and develop demo plan
- Document performance requirements ready to be codified and those that require further definition
- Create roadmap of requirements ready to be codified and outline studies/research needed for aspects that can't
- Identify funding of research/studies for GFM aspects that can't be codified
- Support development of GFM designs by manufacturers that can meet codified requirements
- Provide guidance to OEMs, software vendors and forward-thinking consultants to enable GFM technology deployment globally

2025 - 2027

- Full set of GFM equipment features will be deployable around the world
- GFM operating experience acquired by leading system operators will be shared globally

Goal: Selection of Initial GFM Demonstration Pilots

1. Immediate objective: Demonstrate GFM performance, capabilities, and models based on what we have today or will have soon via existing projects. Demonstrate performance of individual GFM capabilities.

2. Ultimate Objective: Conduct a series of field tests and model validation programs on 5 GFM projects connected in *GW-scale systems*. Demonstrate performance and interoperability across the grid with multiple GFM resources.

GFM demonstration projects:

AEMO

- 300MW existing or imminent BESS projects
- 8 new large GFM BESS projects, 250MW each, 2GW total (2025+)

National Grid ESO

5 new GFM BESS projects under development (2024-2026)

ERCOT GFM demonstrations in West Texas ELIA / 50Hz GFM field & lab demonstrations ENERGINET GFM projects ENTSO-E GFM requirements & programs EPRI GFM programs and modeling US DOE GFM demonstrations

DEMONSTRATION PHASES

- 1. Utilize <u>existing project</u> commissioning, testing, monitoring and modeling data to demonstrate GFM performance.
- 2. Work with system operators, developers and OEMs on **imminent GFM projects** to implement a testing and monitoring plan.
- Work with system operators, developers and OEMs to develop an extensive testing, monitoring and modeling program for enhanced demonstration of GFM <u>on new projects across the grid</u>.

GFM Deployment Roadmap

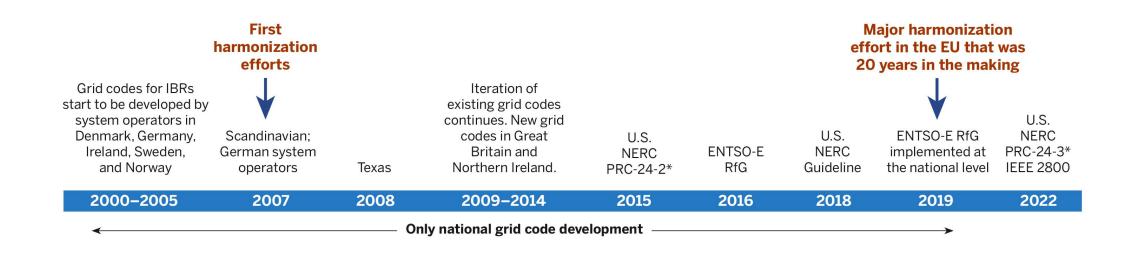
OEM **Operator/Grid Equipment** Generator/Plant Equipment **Frequency Control** Voltage Control Harmonics 100% IBR Fault Ride-through Islanded \sim Unbalance White Mode Grid Compensation Spots Monitor State of Grid \gg Things Control State of Grid ~ Ongoing Map of developments/demonstrations and available solutions DIRECTION OF DEVELOPMENT

Needed Performance

GFM Deployment Roadmap

	OE		
	Operator/Grid Equipment	Generator/Plant Equipment	
Frequency Control	GFM STATCOM/SYNCON: N/A; SYNCON inertia only	GFL: FFR/PFR/Ramping GFM: ROCOF Response Power, Near Instantaneous	
Voltage Control	GFM STATCOM: Dyn Vctrl, 0 SCR capable SYNCON: Dyn Vctrl, SC contribution/+ grid strength	GFL/GFM: Plant/unit Vctrl, Vdroop, limited by grid Z GFM: Voltage Jump Reactive Power, 0 SCR capable	
Harmonics	GFM STATCOM: Filtering/active damping; DR>0.3 SYNCON: N/A	GFL & GFM: Filtering/active damping; DR>0.3	100% IE
Fault Ride-through	GFM STATCOM: Voltage jump reactive power/0 SCR SYNCON: transient stability limited	GFL/GFM: Unit current injection, limited by grid Z GFM: Voltage Jump Reactive Power, 0 SCR capable	Islande
Unbalance Compensation	GFM STATCOM: Voltage jump reactive power/0 SCR SYNCON: I ₂ ² X limited	GFL/GFM: Negative Sequence regulation	Mode G
Monitor State of Grid	GFM STATCOM: PLL (GFL) and voltage/freq tracking SYNCON: Passive	GFL/GFM: PLL (GFL) and voltage/freq tracking	
Control State of Grid	GFM STATCOM: Voltage/Frequency ctrl; ride-through SYNCON: Passive	GFL/GFM: Voltage/Frequency ctrl; ride-through	
•	Map of developments/demonst	rations and available solutions	

Performance Parameters


DIRECTION OF DEVELOPMENT

The way we can get to stable grid with 100%-IBR

Deploying grid-forming capabilities from IBRs themselves is cheaper and faster than adding new transmission assets, which would require additional investment and take much longer to build.

Timeline of Harmonization Efforts for IBR Grid Codes in Europe and the United States

- Grid codes specify the capabilities that IBRs must have in order to interconnect to the grid.
- Diversity in grid codes requires multiple product designs and increase equipment costs.
- Comprehensive harmonized grid code for IBRs took 20 years to develop in Europe.
- The U.S. still has no harmonized grid code for IBRs today.
- We cannot take 20 years to develop and harmonize grid codes for grid-forming IBRs!

Accelerating Pace of Change for GFM Technology through ESIG and G-PST

- **NREL:** Research Roadmap for Grid Forming Inverters (2020)
- ENTSO-E: High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters (2020)
- NERC: Grid Forming Technology Bulk Power System Reliability Considerations (2021)
- NGESO: GC0137 Minimum Specification Required for Provision of GB Grid Forming Capability (2021)
- AEMO: Application of Advanced Grid-Scale Inverters in the National Electricity Market (2021)
- GPST: System Needs and Services for Systems with High IBR Penetration (2021)
- ESIG: Grid Forming Technology in Energy Systems Integration (2022)
- UNIFI: Specifications for Grid-Forming Inverter-Based Resources Version 1 (2022)
- ARENA: Australian Renewable Energy Agency Backs Eight Grid Scale Grid-Forming Batteries Worth \$2.7 Billion (2022)
- AEMO: Transition to Fewer Synchronous Generators in South Australia (2023)
- NGESO: Great Britain Grid Forming Best Practice Guide (2023)
- **AEMO:** Voluntary Specification for Grid-Forming Inverters (2023)
- FINGRID: Specific Study Requirements for Grid Energy Storage Systems (focuses on grid forming requirements) (2023)

Ongoing Global GFM Initiatives & Standardization

- CIGRE JWG B4/C4.93 "Development of Grid Forming Converters for Secure and Reliable
 Operation of Future Electricity Systems"
- IEC TC8/SC8A: Proposal on Joint Working Group initiative for GFM standardization
- **CENELEC TC8X:** WG03 new work item on standardization of grid forming controls
- **IEEE P2988:** Recommended Practice for Use & Functions of Virtual Synchronous Machines
- **VDE-FNN** Grid Forming Guideline for HVDC and Power Park Modules
- ACER / ENTSO-E RfG 2.0 (requirements for generators) and INTEROPERA: Grid forming requirements
- Hawaii Grid Forming Specification

GFMTC Demonstration Proposal

Framework of GFM capabilities and performance to be demonstrated & scaled

INPUTS

- Universal Interoperability of GFM Inverters (UNIFI) Specifications
- National Grid ESO GFM Requirements
- NERC Recommendations_
- OSMOSE & VDE-FNN GFM Requirements
- HAWAII GFM Project
 Experience

ADD

- AEMO GFM Experience & Requirements
- Energinet GFM Experience & Requirements

GFM DEMONSTRATIONS VIA FIELD TESTS, MONITORING & MODELING

Performance <u>under</u> normal grid conditions

- Autonomously support the grid
- Provide positive damping
- Coordination of controls (P & Q sharing)
- Robust operation in low system strength grids
- Voltage balancing

Performance outside normal grid conditions

- Ride-through behavior
- Asymmetrical fault response
- Abnormal frequency response
- Response to phase jumps & voltage steps
- Intentional Islanding

Additional Behavior

- Black start and system restoration
- Regulating voltage harmonics
- Secondary voltage & Frequency Signal Response
- IBR short term rated current
- Constraints due to source ("prime mover")

Modeling & Documentation

- Model types, structure & parameterization
- Validation of models against field & factory tests
- Demo of GFM performance with validated models where field testing & monitoring is not available

Demonstration plans will be developed for each project Planned \$55M Funding Support (\$5M/project + \$5M PM support) Perform demos, develop reports & disseminate knowledge globally

Build a Framework for GFM Requirements

- Document performance requirements ready to be codified and those that require further definition (per OSMOSE, GPST and ESIG reports)
 - Leverage existing GFM requirements already developed or being developed in National Grid, AEMO, ENTSOE, UNIFI, etc.
 - Leverage GFM test plans from Hawaii, NERC IRPS, German FNN-VDE requirements, UNIFI, etc.
 - Coordinate with Pillar IV on standards development
- Create roadmap of requirements ready to be codified and outline studies/research needed for aspects that can't
- Identify funding of research/studies for GFM aspects that can't yet be codified
- Identify and support development of GFM designs by manufacturers that can meet codified requirements
- Identify grid challenges that can't be resolved by GFM alone and articulate how requirements would need to be updated to address them

Actions and Next Steps

1. Accelerate GFMIC testing plans from 10 demonstration opportunities across the council.

- ✓ Single pilot tests
- 2. Develop detailed GFM demonstration plans :
 - ✓ Simulation
 - ✓ Testing
 - ✓ Requirements/Standards deployment

- ✓ Multi-GFM grid-wide tests
- ✓ GFM Models
- ✓ Metrics
- Research & Innovation funding
- 3. Engage regulators in GFMIC discussions for developing a framework of baseline GFM requirements

High Priority Next Steps:

- ✓ Complete roadmap to identify white spots and actions to address them
- ✓ Accelerate GFM development & deployment through 10 demonstrations
- ✓ Create common framework for GFM codification and standardization for scalability
- ✓ Define expectations for the future that are realistic, implementable and at a workable pace for society

Thank you

globalpst.org/

Sten Arendt Stoltze

