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ABOUT CAMUS ENERGY

Grid Orchestration for a
100% Electrified Future

OUR PERSPECTIVE

We leverage deep experience designing & operating
hyperscale, high-reliability software systems to
help utilities build and operate the two-way grid.
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WHAT IS GRID ORCHESTRATION?

Visibility and control for a new
era of grid management
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CAMUS PLATFORM CAPABILITIES
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See real-time and forecasted grid / \
conditions using data from AMI, GIS, | Grid
SCADA, and DERMS Awareness

Dispatch DERs with respect for grid
ﬂ)? constraints, via an ecosystem of
DERMS & aggregator partners

Incorporate DER flexibility into
system planning, reducing capital
investments and lowering rates




THE CHALLENGE

Why is working with weather forecast data difficult?

Three challenge areas:

1. Physical - do we
have the right inputs?

2. Relevance - do the
time scales match
what we need?

3. Usability - can we,
find, access, and use
the data?

& CAMUS

What is Needed: Ongoing Synthesis of Quality Representative Datasets

Representative of Covers Multiple Required Attributes of Weather

Decades with .
Actual Weather T Inputs for Power Systems Analysis

Coincident, Physically Validated and
Consistent Weather Uncertainty Expertly Curated
Variables Quantified

Publicly Availableand
(<=2 km, <=15 min) Easily Accessible

SHlicenthessigilon Periodically Refreshed

Transparently

Chronological Regularly Extended Documented

Physical Requirements Relevance Requirements Usability Requirements

Source: Weather Data Inputs for Power System Modeling:
December 5, 2023 ESIG Webinar by Justin Sharp

Mind the Gaps
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https://www.esig.energy/event/webinar-weather-data-inputs-for-power-system-modeling-mind-the-gaps/

WHAT IS A NUMERICAL WEATHER PREDICTION SYSTEM?

Discretized model of the atmosphere run on a Supercomputer

Three components: Components of a NWP system

1. Data assimilation -

@ Dynamic core (to move the air around)

|n|T|allzeS mOdeI bqsed e Data assimilation system (to initialize the model
on cu rrenf Observq'ﬁons with the current weather conditions)
e Physics package (to represent clouds,
2. Dynqmic core - mOTiOI‘l precipitation, radiation, turbulence, interactions

with the land and ocean, and more)

& interaction of cell
properties, water, heat,
etfc.)

3. Physics suite -
approximates smaller
factors (e.g. how
raindrops form)

A\
S
e

Dynamic Core

Observations (of as many variables as possible) are essential for
both evaluating (improving) NWP models and initializing them

Source: NOAA’s 3km Rapid Refresh Weather Forecasting Models and Renewable Energy
Forecasts January 25, 2024 ESIG Webinar by Dave Turner



https://www.esig.energy/event/webinar-noaas-3km-rapid-refresh-weather-forecasting-models-and-renewable-energy-forecasts/
https://www.esig.energy/event/webinar-noaas-3km-rapid-refresh-weather-forecasting-models-and-renewable-energy-forecasts/

WHY WEATHER FORECASTING

What are we (Camus) trying to

accomplish with weather forecasts?

We’re using weather data to create
operational forecasts for electric utilities.

Challenges to overcome:

e Weather forecast data is big and
complex
o Terabytes of data per forecast year
o Grib2 binary data
e Infegrating weather data info machine
learning models is complex

o 100’s of meteorological variables
o Geospatial gridded data

Fortunately, there are many public and
private orgs collaborating to help!
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CURATING DATA

How do we identify the right weather forecast?

Model HRRR V4 (description) GEFS (description) GFS (description)
Product surface (sfc) | Subhourly (subh) parb2sp25 I parb2bp5 | parb2ap5 parb2
Run Schedule 00, 06, 12, 18 (z) hourly hourly 00, 06, 12, 18 (z) 00 (z) 00, 06, 12, 18 (z) 00, 06, 12, 18 (z) 00, 06, 12, 18 (z)
Forecast Horizon 0-48 hours* 0-18 hours 0-18 hours 0 - 240 hours 0 - 840 hours 0 - 384 hours 0-120 120-384
Spatial coverage 3km 0.25° 0.5° 0.5° 0.25° 0.25°
Temporal Resolution| 1 hour | 1 hour | 15 min 3 hour 3 hour 3 hour 1 hour 3 hour
Archive start date 2020-12-03 (v4) 2018-07-03 (V3) 2020-09-25 ** 2021-03-22 ***
Ensemble Mean, Control, 30 Perterbation Members, Spread
Status Till RRES is operational Operational Operational
GCP Bucket high-resolution-rapid-refresh gfs-ensemble-forecast-system global-forecast-system
Terabytes/Year 10.0 233 29.1 67.3 320.5 777 92.2 67.1
Files/Year 70k 157k 157k 3,737k 3,270k 5,980k 42k 93k
100°E  90°E 80°E 70°E 60°E  50°E 40°E Forecast st (valid) Time.

& CAMUS
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https://docs.google.com/spreadsheets/d/1kcMqDvaIegzqUwxUDIDN5jgeU7r4lq-u07Lxpe1RK4k/edit?usp=sharing
https://docs.unidata.ucar.edu/netcdf-java/current/userguide/fmrc_ref.html

INCREASING ACCESSIBILITY

Translating
weather to
grid forecasts

WE START HERE

Weather forecast
archives (since 2020) -
zero cost to read!

A A

Static metadata W
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‘f Trigger for

Notifications
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extraction J
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GCS static data
storage

~

Indexing
processes for each

new grib file

Database of
indexed references

A4

Machine learning
application
builds ERMC
aggregation at
request time

Collection of grid forecasts across
time periods; easy to access
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https://www.noaa.gov/information-technology/open-data-dissemination
https://www.noaa.gov/information-technology/open-data-dissemination
https://www.noaa.gov/information-technology/open-data-dissemination
https://github.com/asascience-open/nextgen-dmac/pull/57
https://github.com/asascience-open/nextgen-dmac/pull/57
https://docs.unidata.ucar.edu/netcdf-java/current/userguide/images/netcdf-java/tutorial/feature_types/fmrc.png

INCREASING ACCESSIBILITY Big picture: Grid fore:cgs‘ring is
now fast and efficient

Specific improvements for accessibility ($0.02 per meter per year)

100X (!) performance improvement on index ingestion and ML operation!

We use Xarray DataTree to express grib2 “group” data model for all layers

Fast & efficient indexing of NODD grib archives using “idx” metadata

Operational NODD archive index data is stored in a database

Xarray dataset “kerchunks” are created from index queries for variables and time ranges
Zarr patch allows fault tolerant & parallel reads for fast & efficient IO

To forecast each individual electric meter for a large investor-owned utility (>1 million meters),
it costs $0.02 per meter-year forecast.

Why is it so economical? There is a lot we have done in our machine learning too, but an
important one = we don’t pay for storing or serving weather data. NODD’s partnership with
the cloud providers does this for us.

Technical details and source code: Optimizations for Kerchunk aggregation and Zarr I/0 at scale for Machine Learning



https://discourse.pangeo.io/t/pangeo-showcase-optimizations-for-kerchunk-aggregation-and-zarr-i-o-at-scale-for-machine-learning/4074/1

container_cpu

INCREASING ACCESSIBILITY

Super fast!

|‘, I

l
Sustained read rates of 1 o 2 i ] AU "
Gb/second while training over 1 i
multiple years. ‘

——
;;E_f

f i |l

02:45 03:00 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 05:15 05:30 05:45 06:0
== forecasting- -ami-v9-training-pgtdar-vifzg == forecasting- ami-v9-training-pgtdar-9wt49

== forecasting- -ami-v9-training-pgtdar-hpt2k == forecasting -ami-v9-training-pgtdar-pv2jk

The parallel processing Network Bytes Recelved
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INCREASING TRANSPARENCY & ACCESSIBILITY

View data using off the shelf community tools

X xreds viewer

. . . Datasets Layer Tiling
XPublish is a web services layer _
@ hrrr-conus-sfcf_6-hours =

@ hrrr-conus-sfcf_24-hours =

for the PyData ecosystem.

XReds is a configuration based
webmap service gui frontend.

Accessibility beyond the ML
models - visual exploration
using standard webmap
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SGFVlceS. Flux) Mazatlan
Tampico

prate_instant_surface (Precipitation rate) Cuadalolara
© hrrr-conus-sfcf_48-hours = Mexico City
@ hrrr-conus-subhf_6-hours . P
© hrrr-conus-subhf_12-hours &
@ hrrr-conus-subhf_18-hours k-
- ST =

& CAMUS

t2m_instant_heightAboveGround (2 metre
—_—_n

d2m_instant_heightAboveGround (2 metre dewpoint

r2_instant_heightAboveGround (2 metre relative

u10_instant_heightAboveGround (10 metre U wind

v10_instant_heightAboveGround (10 metre V wind

~omponent)

si10_max_heightAboveGround (10 metre wind speec

dswrf_instant_surface (Downward short-wave
radiation flux)

vddsf_instant_surface (Visible Diffuse Downward Solar

Flux)

vbdsf_instant_surface (Vi<

ble Beam Downward Solar

-
Salt Lake City
£

Cheyénng £
f,

oeh

Unitet Sy

iy
(,‘? of AmeFicg

Las Vega: /(
as Vegas pe., &

es 7
Phoenix

W

Confidential | © 2024 Camus Energy Inc

a

\ L A RS e f
hrrr-conus-sfcf_24-hours - dswrf_instant_surface

d short:
Date: 2024-06-18T17:00:00Z v

flux (W m**-2)

Nicaragua  © MapTiler © OpenStreetMap contributors, Y

11



INCREASING TRANSPARENCY & ACCESSIBILITY

An open-source stack @ CAMUS
for weather data I

Fsspec & Kerchunk

A OO\

XPublish 0:;,
ECFan P Zal‘r -y xarray Ntlr:l:

= Xz'ﬁ'}zsc’ﬂ £ Google Cloud

dWS

e

Machine Learning Forecasts
for Grid Operators

\

N %
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Open Source Python Data
Science Tools
AN _/
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NOAA Open Data Dissemination
J
N
Cloud Services
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OUR ECOSYSTEM PARTNERS

Who helps us make the available data operational for utilities?
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https://pydata.org/
https://numfocus.org/
https://discourse.pangeo.io/
https://ioos.noaa.gov/
https://asascience-open.github.io/nextgen-dmac/
https://github.com/jackKelly/light-speed-io
https://www.noaa.gov/information-technology/open-data-dissemination
https://www.noaa.gov/information-technology/open-data-dissemination
https://www.noaa.gov/information-technology/open-data-dissemination
https://www.esipfed.org/
https://martindurant.github.io/
https://github.com/ecmwf

SO WHAT? The goal of forecasting is not to

How utilities use forecasts predict the future but to tell you

what you need to know to take

meaningful action in the present

Distribution system operators need
foresight to operate their grid - the
urgency only increases with more DERs
making prediction more complex.

— Paud Saéé& -

AZQUOTES

Let’s briefly highlight two utility use cases for operational weather forecasts:

1. Peak demand reduction (e.g. demand response)
2. Flexible interconnection (generation) / flexible service connection (loads)



USE CASE #1: PEAK REDUCTION

Managing peaks can
save millions of $ to b [ controea |._Feedercapacity o\

uncontrolled

Example of Peak Reduction via DER Control

The grid must be ready to
serve maximum demand at
any time. 8

W

By reducing peak demand, = ;|

costs are lowered via:

e Less peak-cost
generation purchased

e Avoided transmission and
distribution upgrades 2

Accurate forecasting is

. 12am 6am 12pm 6pm 12am
required to reduce peaks.



USE CASE #2: FLEXIBLE INTERCONNECTION

Customers and regulators want
faster inferconnections

Goal: Enable increased utilization of
existing infrastructure and accelerate
interconnection of more DERs

How it works:

1. Use GIS/connectivity, conductor attributes,
& asset ratings to establish system models

2.  Train machine learning models to predict
outputs at the meter-level, then aggregate

3. Evaluate network at min/max DER dispatch

Generate “operating envelopes” and manage
devices to avoid voltage/loading violations

Conventional Interconnection Flexible Interconnection

DER Capacity (t)

s

§ Hosting = _se===== ~ 7 \;y----
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3 Capacity (t) _.-=" - RN e 3 \ AN
P § Pd Conventional Limit ™ k7
e L el
S | DER
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& ) DER Output (t)
= DER Output (t) 2ay
Time Time
Monitor Analyze Control \/’o scurent ) @

View Range
m 10/30/2023 ~11/6/2023

Production & Consumption

10.0 kW

0.0 kW
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Usage via AMI (300486134) 1 1 Forecas



https://www.epri.com/research/products/000000003002014475

USE CASE #2: FLEXIBLE INTERCONNECTION

Forecasting is an essential enabler for flexible interconnections

Training input Prediction Output DEVICE

INPUTS S OUTPUTS CONTROL

Machine
Learmng

Cohort
Machine
Learning
Model B

GIS & Connectivity System Models

Operating DRMS & DERMS
Envelopes

kW 4 Exp
% T /'\/\ . DER Aggregators
>t (Non-Utility VPPs &

I
e
& - l o Fleets)

o FTM
@ Resources

SCADA

Network
Models




CONCLUSION

There’s much more to do; here are ideas for how to get involved!

o Support NOAA to improve data and data e Engage with organizations to support
accessibility further development of these tools

o NOAA Open Data Dissemination o Energy Systems Integration Group
o NOAA Center for Environmental Prediction o Pangeo Discourse
o US Integrated Ocean Observing System o Earth Science Information Partners
. o ] ] o OpenClimateFix
e Engage with existing solution providers o Numfocus
for off the shelf solutions :
o Camus Energy ° Get your hands dirty by developing new
o RPS features to advance the capabilities
o EarthMover : o zarr-python
o OpenMeteo o light-speed-io
o Anaconda o  Kerchunk
o  VirtualiZarr
Camus source code is available in the RPS/I0O0S o  Xpublish
Nextgen DMAC Github repo o Xreds


https://www.noaa.gov/information-technology/open-data-dissemination
https://www.nco.ncep.noaa.gov/
https://ioos.noaa.gov/
https://www.camus.energy/
https://www.rpsgroup.com/
https://earthmover.io/
https://open-meteo.com/
https://www.anaconda.com/
https://www.esig.energy/
https://pangeo.io/
https://discourse.pangeo.io/
https://www.esipfed.org/
https://openclimatefix.org/
https://numfocus.org/
https://github.com/zarr-developers/zarr-python
https://github.com/jackKelly/light-speed-io
https://github.com/fsspec/kerchunk
https://github.com/zarr-developers/VirtualiZarr
https://github.com/xpublish-community/xpublish
https://github.com/asascience-open/xreds
https://github.com/asascience-open/nextgen-dmac/tree/main/grib_index_aggregation

Zero Carbon Grid Orchestration

THANKS!
DAVID@CAMUS.ENERGY



_A Weather use cases

weeks
CURATING DATA to
months "Long"
T. I TT ' Waves
ime scales matter! 4 o—
5 weeks Tropical Storms “Short"
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Meier, Alexandra. (2011). Integration of renewable generation in California: Coordination challenges in time and space. IEEE. 10.1109/EPQU.2011.6128888.



