

IEEE 2800 vs Existing ERCOT Interconnection Requirements, Gap Analysis Learnings

ERCOT

Stephen Solis – Principal, System Operations Improvement

August 11, 2022

ERCOT Adoption of IEEE 2800 Objective, Approach, and Timeline

Objective

Inform strategic ERCOT decision on IEEE 2800 adoption method:

- General reference ('wholesale adoption')
- Detailed reference ('piecemeal adoption per reference')
- Full specification ('piecemeal adoption own language')

Tentative Timeline by Priority

Wholesale or High: Sept – Q1 2023 Medium: Q1 2023 – Q4 2023 Low: 2024

Approach

- 1) EPRI gap analysis
 - a. High-level gap analysis: identify where ERCOT has no requirements, but IEEE 2800 does
 - b. Detailed gap analysis: identify where ERCOT and IEEE 2800 both specify requirements and Where IEEE 2800 are more specific or more stringent than ERCOT requirements ("<")
 - ii. Where ERCOT requirements and P2800 already align in stringency and level of specificity ("~" Where ERCOT requirements exceed IEEE 2800 either in stringency or specificity (">")
- Stakeholder discussion in ERCOT's Inverter-Based Resources Task Force (IBRTF) (<u>https://www.ercot.com/committees/ros/ibrtf</u>)

ERCOT Stakeholder rules

ERCOT

 ERCOT Nodal Protocols (NPs) – applicable Sections available at <u>https://www.ercot.com/mktrules/nprotocols/current</u> and published on or prior to February 11, 2022.

-The [Nodal] Protocols outline the <u>procedures and processes used by ERCOT and Market</u> <u>Participants</u> for the orderly functioning of the ERCOT system and nodal market.

 Nodal Operating Guides (NOGs) – applicable Sections available at <u>https://www.ercot.com/mktrules/guides/noperating/current</u> and published on or prior to March 1, 2022

-The <u>Nodal Operating Guides</u>, which <u>supplement the Protocols</u>, describe the working relationship between ERCOT and the entities within the ERCOT Region that interact with ERCOT on a minute-to-minute basis to ensure the reliability and security of the ERCOT System.

 Planning Guide (PG) – applicable Sections available at <u>https://www.ercot.com/mktrules/guides/planning/current</u> and published on or prior to `January 1, 2022

-The <u>Planning Guide</u>, which <u>supplements the ERCOT protocols</u>, provides ERCOT stakeholders and market participants with information and documentation concerning the ERCOT transmission planning process.

 Model Quality Guide (MQG) – applicable Sections available at <u>https://www.ercot.com/services/rq/integration</u> and published on or prior to April 20, 2021

-Assists REs/IEs submit stability models per Planning Guide Section 6.2, including the new Model Quality Testing requirements. Also <u>includes the UDM Model Guideline and PSCAD Model</u> <u>Guideline</u>.

IEEE 2800-2022

- IEEE P2800 Draft 6.3 (December 2021)
- Remarks on ERCOT documents:
- Both NPs and NOGs are <u>mandatory</u>.
- NPs are broad in scope and tend to high level.
- NOGs tend to be narrower in scope and provide guidance on more practical/ operational aspects.
- The language in NPs and NOGs should not be in conflict; <u>if it is in conflict, it should be</u> <u>pointed out as a finding</u>.
- Some requirements only apply to resources providing ancillary services (AS); this would be explicitly stated, or it is obvious from the Section of the NPs.
 - For example, where an entire section is on Responsive Reserve (RRS) qualification or performance.

Thirteen (13) high-level gaps in ERCOT relate to 2800 mandatory requirements

Preliminary High-Level Gap Assessment of ERCOT Nodal Protocols

Legend: X Prohibited, √ Allowed by Mutual Agreement, ‡ Capability Required, NR Not Required (‡) Procedural Step Required as specified, Δ Test and Verification Defined, !!! Important Gap

Function Set	Advanced Functions Capability	ERCOT Nodal Protocols	IEEE 2800-2022
Sec 4 _{General}	Definitions	?	?
	Reference Point of Applicability	POI	POM
	Adjustability in Ranges of Available Settings	NR (!!!)	ŧ
	Prioritization of Functions	ŧ	ŧ
Sec 11 Monitoring, Control, and Scheduling	Ramp Rate Control		
	Communication Interface	ŧ	ŧ
	Disable Permit Service (Remote Shut-Off, Remote Disconnect/Reconnect)	ŧ	ŧ
	Limit Active Power	ŧ	ŧ
	Monitor Key Data	ŧ	ŧ
	Remote Configurability		V
	Set Active Power	ŧ	V
	Scheduling Power Values	ŧ	V
Sec 5 Reactive Power & (Dynamic) Voltage Support	Constant Power Factor	ŧ	+
	Voltage-Reactive Power (Volt-Var)	ŧ	+
	Autonomously Adjustable Voltage Reference	?	
	Capability at zero active power ("VArs at night")	NR (!!!)	ŧ
	Active Power-Reactive Power (Watt-Var)		
	Constant Reactive Power	NR (!!!)	ŧ
	Voltage-Active Power (Volt-Watt)	NR	NR
	Dynamic Voltage Support / Balanced	ŧ	ŧ
	Current Injection during VRT Unbalanced	NR (!!!)	ŧ

Acknowledgements for contributions and peer-review: Julia Matevosyan (ESIG)

Function Set	Advanced Functio	ERCOT Nodal Protoc.	IEEE 2800-2022	
Sec 6&7	Frequ	ency Ride-Through (FRT)	ŧ	ŧ
	Rate-of-Change-of-Frequency (ROCOF) Ride-Through		NR (!!!)	ŧ
Bulk System Reliability & Frequency Support	Voltage Ride-Through (VRT)		ŧ	ŧ
	Transient Overvoltage Ride-Through		√(!!!)	ŧ
	Consecutive Voltage Dip Ride-Through		NR (!!!)	ŧ
	Restore Output After Voltage Ride-Through		NR (!!!)	ŧ
	Voltage Phase A	NR (!!!)	ŧ	
	Frequency Droop / Frequency-Watt		ŧ	ŧ
	Fast Frequency Response /	Underfrequency FFR	√(!!!)	ŧ
<u> </u>	Inertial Response	Overfrequency FFR	NR	٧
	Return to Service (Enter Service)		?	ŧ
	Black Start		NR	٧
Sec 9 Protection Functions and Coordination	4	Abnormal Frequency Trip	NR	٧
	Rate of Change of Frequency (ROCOF) Protection		?	v
	Abnormal Voltage Trip		NR	V
	AC Overcurrent Protection		?	٧
	Unintentional Islanding Detection and Trip		NR	٧
	Interconnection System Protection		?	٧
Sec 8 Power Quality	Limitatio	n of DC Current Injection		
	Limitatio	n of Voltage Fluctuations	NR (!!!)	ŧ
	Limitat	ion of Current Distortion	NR (!!!)	ŧ
	Limitat	ion of Voltage Distortion	NR	٧
	Limitation o	f (Transient) Overvoltage	NR (!!!)	ŧ

Thirteen (13) high-level gaps in ERCOT relate to 2800 mandatory requirements

erci

2022 Odessa Event – Phase Angle Jump

- 3 plants had inverters trip off with combined loss of 385 MW
- All 3 plants have inverters from same OEM
- Plants had all inverters trip on Volt Phase Jump fault code occurs when expected phase angle deviates > 15 degrees
- IEEE 2800 Section 7.2.3.4 requires ride through minimum to be 25 degrees.
- Current blocking is not allowed as post disturbance as well.
- IBRs need to be hardened or increase resilience to ride through disturbances.

PUBLIC

2022 Odessa Event – AC Overvoltage

- One plant had inverters trip totaling 295 MW loss
- All inverters tripped on Instant AC Overvoltage in which inverter trip occurs in 1-3 ms when voltage exceeds 1.25pu
- Inverter terminal voltage reached 1.3pu during event, but high side of MPT only reached 1.056pu per PMU data provided by RE
- While ERCOT already has generic performance requirements that requires voltage ride through in general, IEEE 2800 Section 7.2.3 Transient overvoltage ride-through requirements clearly identifies transient overvoltage requirements for the plants to meet.
- If plant equipment designed and configured to meet IEEE 2800 Section 7.2.3 requirements, AC overvoltage trips should be reduced significantly or removed all together.

PUBLIC

Questions?

ercot 💝

PUBLIC