Deep Learning for Optimization

- Many computationally challenging optimization problems are solved repeatedly under different scenarios. Plenty of data is generated.
- Benefit from fast and accurate approximations.
- Deep learning solutions are particularly appealing to approximate the solution of these optimization problems.
- **Issue:** Presence of hard physical and engineering constraints.
 - Ohm's and Kirchhoff laws in power systems, Weymouth equations, in Gas networks, and the Navier-Stoke's equations for shallow water in flood mitigation.
- Goal: How to enable a deep learning model to take account of these constraints in its predictions?

Deep Constrained Learning

$$\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\mathcal{M}[\theta](\boldsymbol{d}_{i}), \boldsymbol{x}_{i}^{*})$$
$$s.t. \ g(\mathcal{M}[\theta](\boldsymbol{d}_{i}), \boldsymbol{d}_{i}) \leq 0 \ (i \in [n])$$

challenge

Approximate Optimizer

 $ilde{\mathcal{O}} = \mathcal{M}[heta^*]$

$$\begin{split} & \inf \sum_{i=1}^{n} \mathcal{L}_{\lambda}(\mathcal{M}[\theta](d_{i}), x_{i}^{*}, d_{i}) \\ & \operatorname{ax} \min_{\theta} \sum_{i=1}^{n} \mathcal{L}_{\lambda}(\mathcal{M}[\theta](d_{i}), x_{i}^{*}, d_{i}) \end{split}$$

How does it works in Practice? **AC Optimal Power Flow Predictions**

Objective cost distance and runtime

	Dist. to	AC-OPF	cost (%)	Runtime (sec.)			
Test Case	DC	\mathcal{M}^-	\mathcal{M}	AC	DC	\mathcal{M}	
30_ieee	7.9894	2.9447	0.0180	0.1024	0.0148	$< 10^4$	M: AI-based model
118_ieee	4.7455	1.0973	0.5408	0.4207	0.0785	0.0001	
300_ieee	4.7508	1.9543	0.3011	8.0645	0.2662	0.0001	AC: full non-linear mod
	4.5733	2.3706	0.2124	1x	30.3x	$> 10^{4} x$	DC. linear approximatio
	To	otal Avera	ge	Min Speedup			(as used in industry)

Summary: Al-based model can predict quantities several order of magnitude more accurately and faster than the linear (DC) approximation (and a baseline learning model M^-) and reports significantly less constraint violations.

Solution Quality

		Dist. to load flow sol. (%)					
Test Case		DC	\mathcal{M}^-	\mathcal{M}			
20 iooo	p ^g	2.6972	2.0793	0.0007			
30_1666	v	1.2929	83.138	0.0037			
118 joog	p ^g	0.2011	0.1071	0.0038			
110_1000	v	1.9971	3.4391	0.0866			
300 jago	p^g	0.1336	0.0447	0.0084			
500_1666	υ	3.8526	31.698	0.1994			
	p ^g	0.7751	0.9843	0.0197			
	U	2.4284	36.288	0.1995			
		Total Average					

Why does it work?

- Solution trajectories can be approximated by piecewise linear functions.
- ReLU neural networks have the ability to capture piecewise linear functions.
- When many variables have "simple" solution trajectories, highly accurate approximations can be obtained.
- Thm (informal). The approximation error of a ReLU network depends on the trajectory complexity (number of pieces and their total variations) and the network capacity.
- Dependency between complexity of the trajectories and prediction error, in some contexts, regardless of the model capacity.

Why does it work? The importance of modeling constraints

- Introducing constraints using Lagrangian-based penalties is not a regularization term.
- It helps the model accurately learn different hidden features, i.e., to more accurately capture the dependencies across variables and their outputs.

Privacy and Security Concerns

$$\min_{\hat{D},x} \|\hat{D} - \tilde{D}\|^2$$
s.t. $|f(x, \hat{D}) - f^*| \le \alpha$

$$g(x, \hat{D}) \le 0$$

Opportunities and Challenges

- Robustness guarantees about the solutions generated.
- Integration of physics simulators in the loop.
- Scalability and data availability.
- Lack of theoretical results.

Thank You

nandofioretto.com

twitter.com/nandofioretto

nandofioretto@gmail.com 🖂 🌘 github.com/nandofioretto