

Foundation paper components

Sets the foundations for the why/what/how of integrated planning

• Why do integrated planning?

→ Key drivers + blind spots of siloed approach

• What is integrated planning?

→ IP definition

- How to do integrated planning?
- → 4 part "framework" + key information flows

Key drivers of integrated planning

Rapidly accelerating load growth

Aging infrastructure

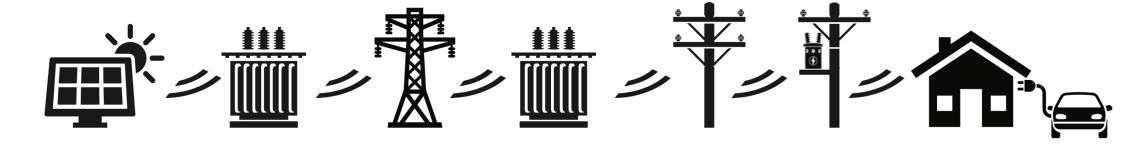
Decarbonization policies

Evolving extreme weather events

Technology evolution

Inverter-based resources

Inter-sectoral coupling



Advances in modeling + cloud computing

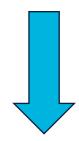
Electricity planning is historically siloed

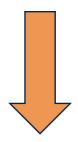
Generation

- 10-20+ year IRP
- Requests for proposals

Transmission

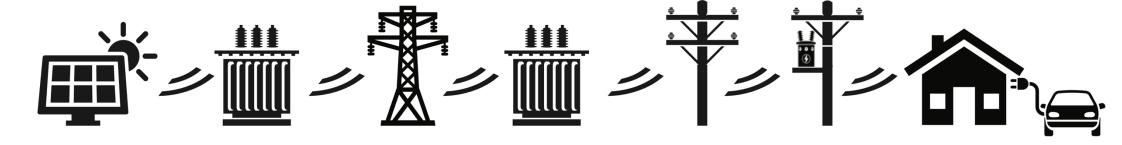
- 5-15 year horizon
- Interconnection studies


Distribution


• 3- to 10-year studies

Customer Programs & DERs

- Simple, coarse forecast
- Cost-effective programs evaluation



Siloed planning worked when investments in one planning domain had limited impact on other planning needs – this is no longer the case

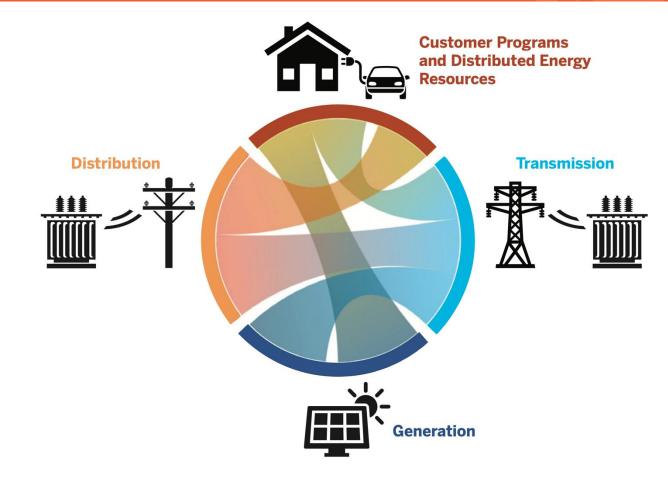
New investments like batteries, EVs, and remote renewables have impacts across planning domains

Generation

Transmission

Distribution

Customer Programs & DERs



Defining integrated planning

Integrated planning is a comprehensive energy system planning approach that coordinates across systems to develop affordable, reliable, and robust investment plans.

Integrated planning coordinates across electricity generation, transmission, and distribution, and customer loads and DERs, and may also consider interactions between the electricity system and other energy systems.

Source: A. Burdick, J. Hooker, L. Alagappan, M. Levine, and A. Olson, *Integrated System Planning: Holistic Planning for the Energy Transition*, Energy and Environmental Economics, Inc. (2024), https://www.ethree.com/wp-content/uploads/2024/10/E3-ISP-Whitepaper.pdf.

Key outcomes from integrated planning

	Examples
Right investments	 Optimal mix of dispatchable thermal, renewable, and storage resources to meet reliability and policy goals Investments in load flexibility versus utility storage Grid investments versus non-wires alternatives
in the right places	 Geospatial forecasting of load growth, distributed energy resources, and resource potential Optimal siting of storage resources on the bulk grid, distributed in-front-of-meter or distributed behind-the-meter
at the right times	 Where to build new transmission infrastructure to support reliability, economic, and policy objectives Proactive grid build-out to support electrification or new large loads Consistent investment signals for the marginal hourly value of generation between bulk grid planning, customer program and distributed energy resource valuation, and retail rate design

Integrated solutions for grid needs

Lower total system costs

Identification and validation of "value-stacking" opportunities

Four pillars of ESIG's integrated planning framework

Integration of Inputs

Aligning inputs, modeling assumptions, scenarios, and data formats and structures across planning processes to set a common foundation across all planning processes

Integration of Analysis

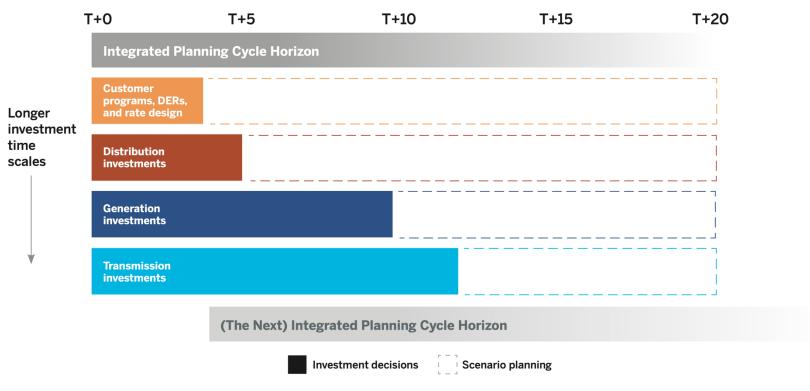
Determining the key data flows between both economic and physical planning analyses needed to reach a comprehensive solution

Integration of Actions

Leveraging integrated planning analyses to determine a coordinated set of near-term proposed investments across all planning domains

Integration with Decision-Making

Ensuring that these proposed near-term action plans fit within existing infrastructure decision-making structures or that those decision-making structures evolve to support regulatory approval and implementation of comprehensive planning solutions


Source: Energy Systems Integration Group.

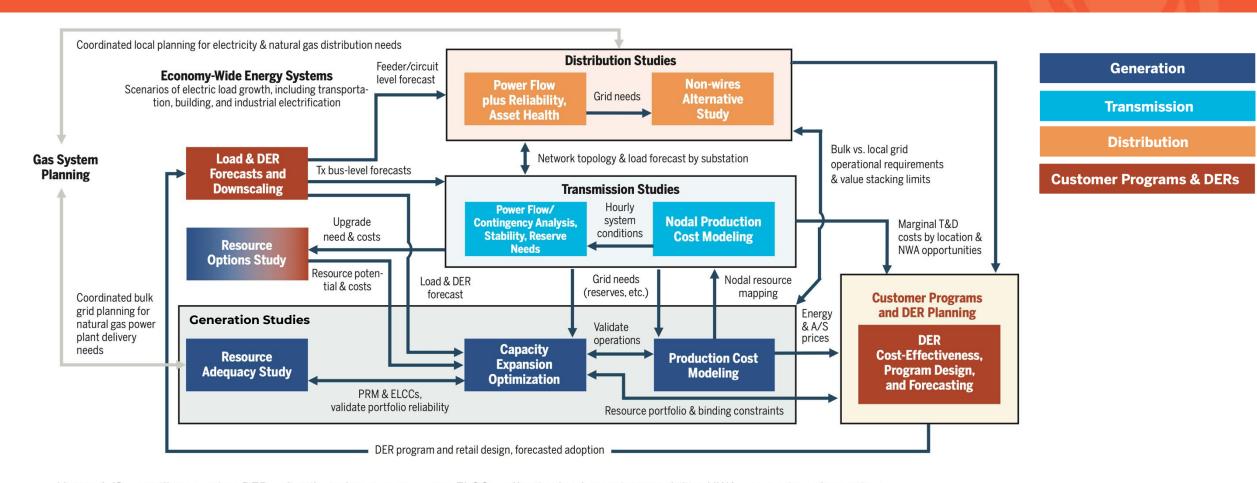
Integration of Inputs

- Develop integrated scenarios across all planning process
- Align key inputs and assumptions (loads, load shapes, etc.)
- Define common data structures to facilitate transfers between models
- Align planning horizons

A Sample Integrated Planning Horizon

Horizons for generation, transmission, distribution, and customer programs and DERs in an integrated planning process, segregated by the investment decision time frame in the current cycle and the scenario planning time frame beyond near-term investment decisions.

Source: Energy Systems Integration Group.


Integration of analysis

- There is no "one-size-fits-all" analytical approach for integrated planning
 - E.g., small island grid vs. RTO wide study, a vertically integrated utility vs planning across organizations in deregulated markets, etc.
- The key focus should be on implementing the necessary data linkages between planning models/decisions to ensure an integrated solution that meets all planning objectives
- Integrated analysis may use:
 - Co-optimization (where feasible)
 - Coordinated modeling processes with iterative feedback loops

Electricity system planning integrations: key data flows

Notes: A/S = ancillary service; DER = distributed energy resource; ELCC = effective load-carrying capability; NWA = non-wires alternative; PRM = planning reserve margin; Tx = transmission; T&D = transmission and distribution

Source: Energy Systems Integration Group, adapted from A. Burdick, J. Hooker, L. Alagappan, M. Levine, and A. Olson, *Integrated System Planning:*Holistic Planning for the Energy Transition, Energy and Environmental Economics, Inc. (2024), https://www.ethree.com/wp-content/uploads/2024/10/E3-ISP-Whitepaper.pdf.

Mapping information flows between planning domains

Necessary integrated planning studies are defined as is the required information flows between them

Connections Between Electricity System Analytical Processes in an Integrated Planning Process

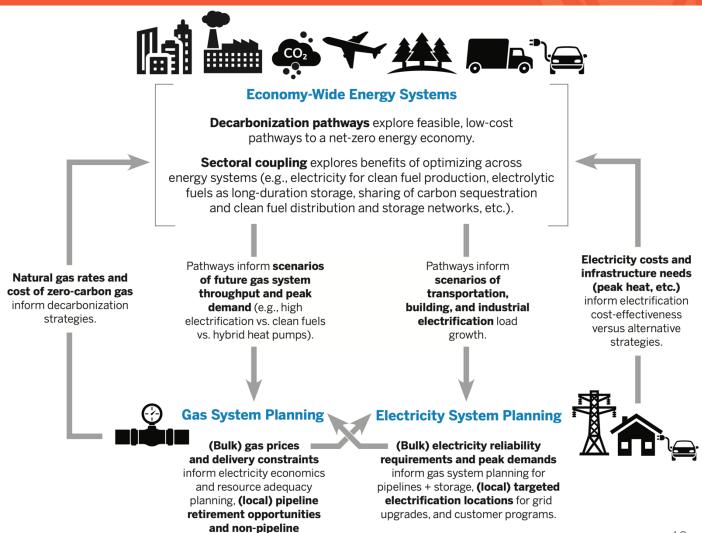
Generation Planning	Transmission Planning	
Generation Planning	Customer Program and DER Planning	
Distribution Planning	Customer Program and DER Planning	_
Transmission Planning	Customer Program and DER Planning	
Transmission Planning	Distribution Planning	
Generation Planning	Distribution Planning	

Examples

Resource options study incorporates transmission upgrades options for deliverability or congestion relief

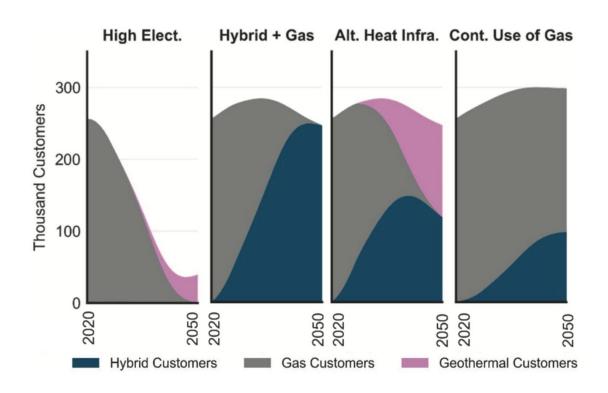
Load forecasts are informed by economywide energy system studies and are aligned across G/T/D planning with appropriate levels of geospatial allocation

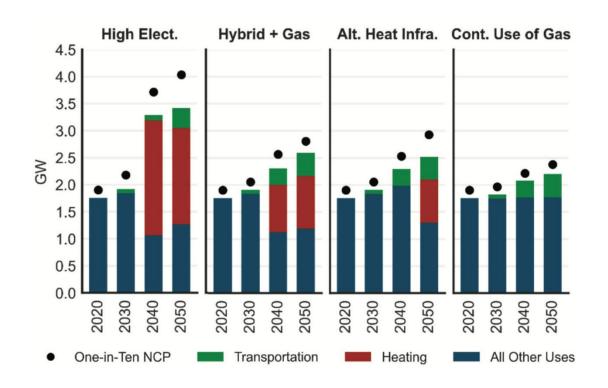
Distribution studies identify investment needs for grid expansion and modernization, while non-wires alternative studies explore how DERs can meet those needs


The ability to value stack is validated, such as providing bulk grid services (like RA) and local grid services (like distribution deferral)

12

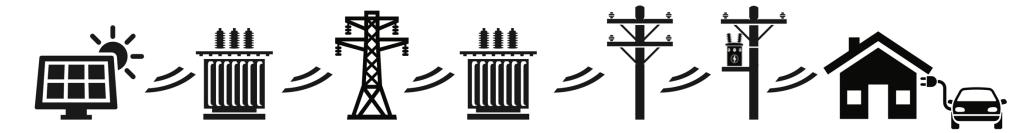
Expanding beyond electricity


- Electricity <> Economywide Energy Systems
 - Electrification scenarios
 - Electricity system costs
- Electricity <> Gas
 - Gas delivery needs
 - Non-pipeline alternatives
- Gas <> Economywide Energy Systems
 - Gas demand scenarios
 - Gas system costs



alternatives

Integrated scenario planning for decarbonizing regions supports electricity and gas infrastructure planning


Decarbonization pathways scenarios inform future gas system demand...

...and electricity peak demand needs for generation, transmission, and distribution infrastructure

Integration of actions

Components of an Action Plan Resulting from an Integrated Planning Process

Generation

Transmission

Distribution

Customer Programs & DERs

Action plans are consistent with integrated planning and require coordination across teams

Generation resource action plan

- Recource investments and/or procurement need
- All-source request for proposals
- Requests for proposals targeted by location

Transmission action plan

- Transmission asset investments
- Storage providing transmission service
- Regional transmission project participation

Distribution action plan

- Investments in substation/ lines/grid modernization
- Development of targeted DER/customer programs
- Non-wires alternatives solicitations

Customer/DER programs and rates action plan

- Customer program evaluation and design for efficieincy and equity
- Rate design updates

Plus pilot programs to validate planning assumptions (technology pilots, commercial pilots, operational pilots, etc.)

Integration into decision making

- There is a wide variety of potential decision makers, which may differ for G/T/D/C
- Integrated planning processes should be designed in the context of decision-making processes
- Key questions:
 - What are the key planning objectives?
 - What decisions will be made in this planning cycle?
 - Who are the decision makers?
 - Who are the stakeholders and how will they be engaged?
 - When will decisions be made?
 - How can decisions be adaptive/robust?

Policymakers +
Regulators
create policy and
ensure prudent
investments

Economic
Modelers
optimize to ensure
least-cost
investment +
operations

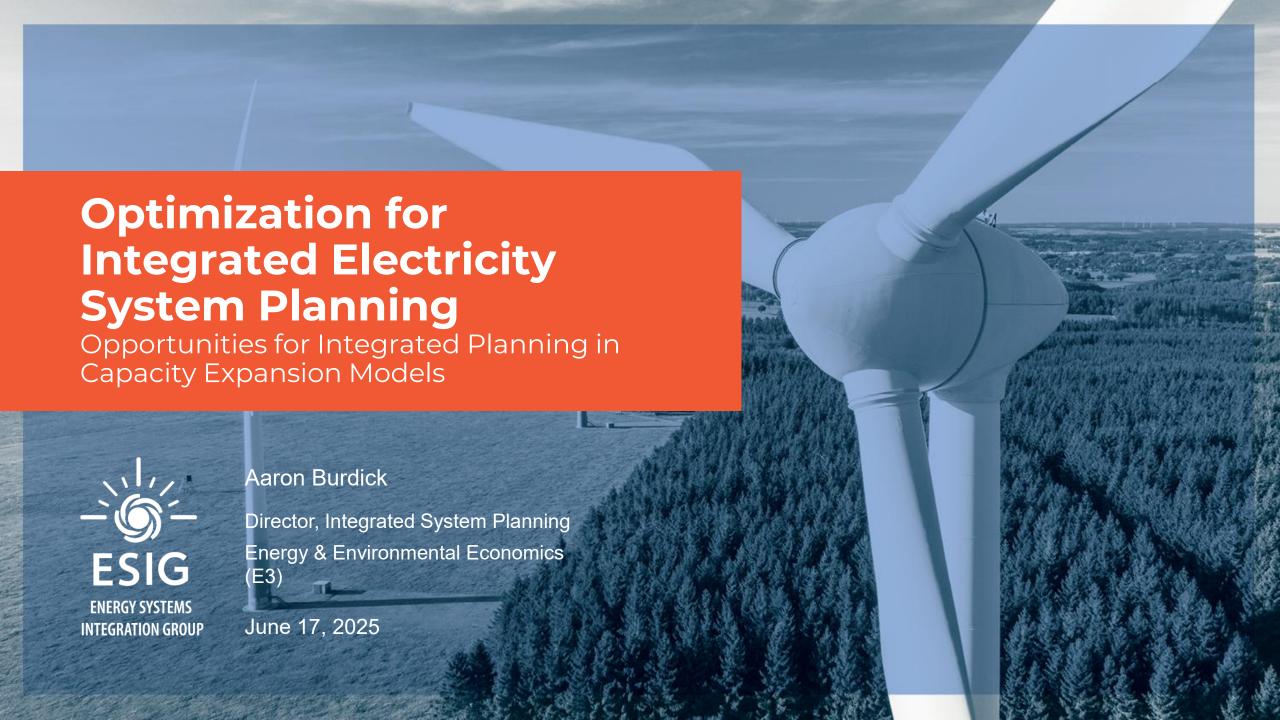
Utility Leaders
provide safe, reliable,
affordable, and clean
power; new asset
approval + cost recovery

Stakeholders meaningfully participate in the planning process

Grid Planning
Engineers
model grid physics to
ensure reliable grid
operations

Developers
understand
where and when
their products
provide value

Getting started



- Perform a gap assessment for existing planning processes
- Align key inputs and develop integrated scenarios
- Better <u>connect existing analytical processes</u>
- Adapt <u>stakeholder engagement</u> plans to support an integrated planning process
- Consider <u>organizational re-alignment</u> and/or <u>formalized agreements</u> between planning organizations
- Consider new opportunities for <u>co-optimization</u> or co-simulation methods across planning domains
- Develop new analytical methods and tools to facilitate planning integrations

Optimization paper components

Explores the opportunities and current challenges for using capacity expansion optimization tools for integrated planning

- Capacity expansion modeling
- → Current optimization approaches, tradeoffs

"Full system" modeling

→ Opportunities and challenges

Bulk grid co-optimization

→ Bulk G + T + storage optimization methods

Bulk + local co-optimization

- → Challenges + currently tractable methods
- Conclusions and how to get started →
- Walk/jog/run for integrated optimization

Traditional generation capacity expansion

Key Inputs

- Load/distributed energy resource forecasts
- Load/distributed energy resource shapes
- Baseline resources
- Planned additions and retirements
- Capital, operations and maintenance, and fuel costs
- Resource potential
- Resource operating characteristics
- Reliability need and resource contributions

Objective Function: Minimize Costs

Fixed resource costs

- Generation capacity (thermal, hydro, renewables, etc.)
- Energy storage
- Demand response, energy efficiency, etc.
- · Transmission (if modeled)

Variable operating costs

- Fuel and variable operations and maintenance costs
- Start Costs
- Carbon costs
- Etc.

Source: Energy Systems Integration Group.

Constraints

Reliability/operations

- Hourly load/resource balance
- · Operating reserves/flexibility
- Resource adequacy
- Resource build limits
- · Resource operating limits
- Transmission flow limits

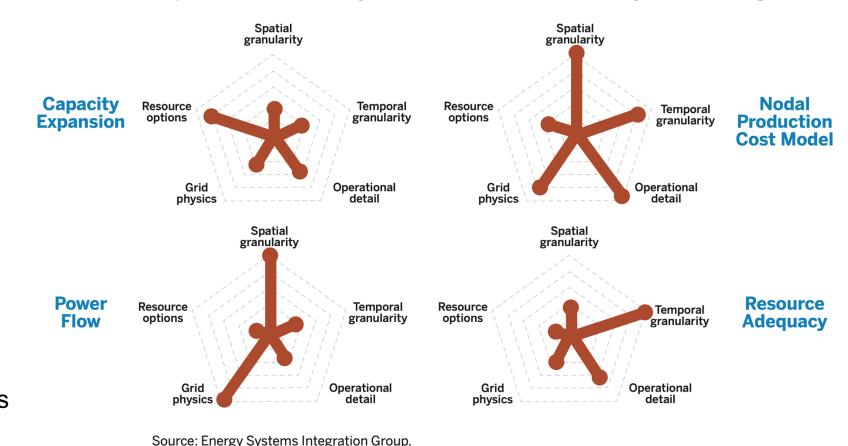
Policy

- Renewable portfolio standard targets
- Greenhouse gas limit and/or carbon price

Key Outputs

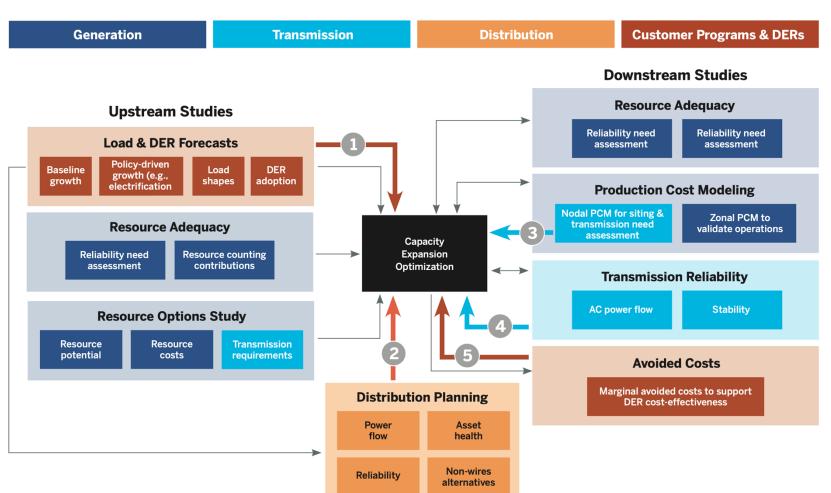
- Generation capacity additions and retirements
- Generation by resource
- Achieved renewable portfolio standard
- Achieved greenhouse gas emissions targets
- Costs
- Modeled costs (annual and net present value)
- Shadow prices (energy, reserves, capacity, renewable portfolio standard or greenhouse gas emissions targets, etc.

- Capacity expansion optimization modeling is used in IRP generation planning processes
- Typically set up as a least-cost optimization problem
- Generation portfolio outputs meet reliability, operational, and policy constraints


Capacity expansion modeling already requires tradeoffs for computational tractability

 Spatial granularity: typically zonal, nodal siting addressed in downstream models

- Temporal granularity: representative days or weeks from broader datasets
- Operational detail: approximations of economic dispatch
- Grid physics: limited detail, simple zone-to-zone transfers limits
- Resource options: multiple candidate resource technologies (some aggregation, often linear not integer variables)


Level of Detail Captured Across Five Key Dimensions in Various Power System Planning Models

A broader optimization presents key opportunities

Upstream and Downstream Processes That Inform a Full-System Capacity Expansion Optimization

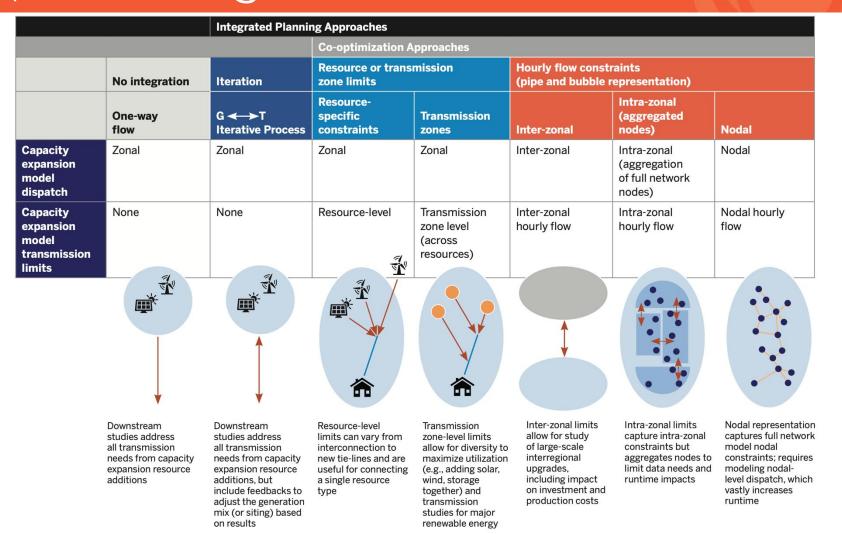
- 1. DERs as resource options
- 2. Local grid constraints to capture full DER values
- 3. Bulk grid locational constraints and congestion solutions
- 4. Transmission reliability needs
- Consistent valuation of supply + demand side resource options

Source: Energy Systems Integration Group.

A broader optimization also presents key challenges

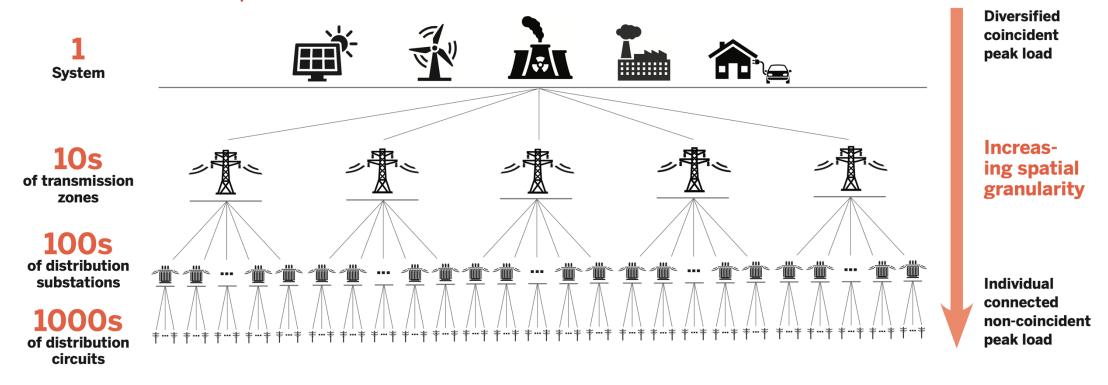
Computational challenges

Data challenges

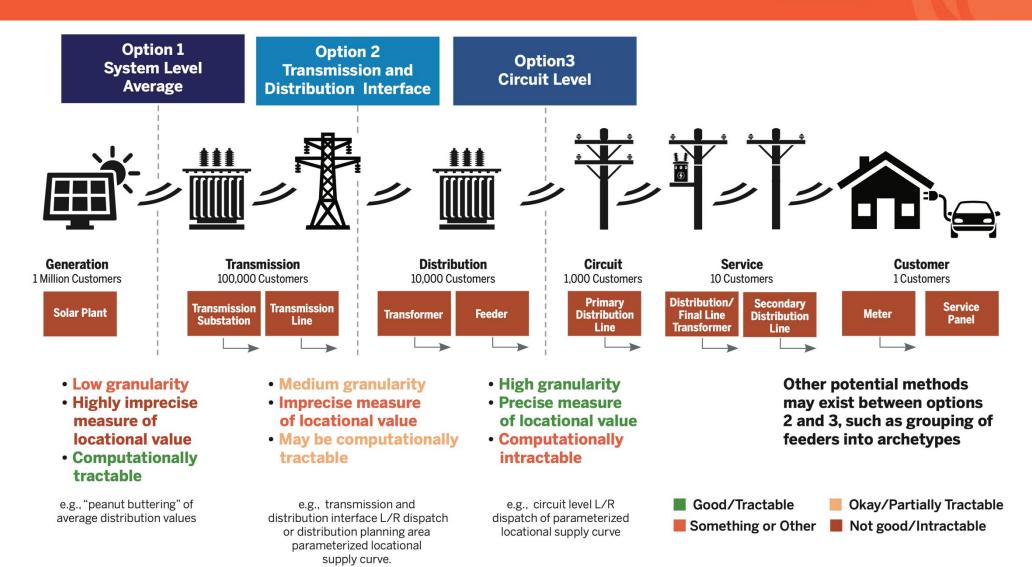

Process challenges

- Tradeoffs in spatial granularity vs model runtime
- Capturing full distribution system detail is generally intractable in system optimization
- Significant new data development is required, with varying degrees of difficulty, such as:
 - Geospatial load allocation
 - Geospatial resource potential
 - Grid upgrade options and costs
 - DER program "bundling"
- Overconfidence in specific outcomes
- Real world validation requires additional considerations (risk, uncertainty, feasibility, equity, etc.)
- Multiple decision-making venues for optimal investments

Capacity expansion models are well positioned to co-optimized bulk-grid generation, transmission, and storage


- Resource / transmission zone limits
- Hourly flow constraints
 - Inter- and intra-zonal
 - Nodal

The challenge of capturing granular DER location values


An Example of Relative Scales of a System-Wide Zonal Expansion Problem Versus a Granular Distribution-Level Expansion Problem

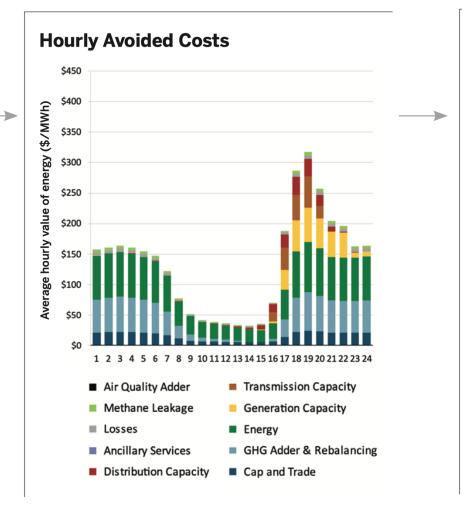
It is currently computationally intractable to model detailed distribution grid topology in a system-level optimization because it requires hundreds to thousands of load forecasts and resource zones to model.

There is a tradeoff between computational tractability and spatial granularity

Alternative 1: Marginal hourly avoided costs

Alternative 2: Local-grid optimization with bulk-grid avoided costs

Initial bulk-grid resource plan


Capacity Expansion

Generation

Transmission

Forecasted and/or Optimized DER

Bulk-grid values and performance requirements, resource adequacy, etc.

Local grid and resource plan

Integrated Distribution System Planning

Substation- or feeder-level economic optimization

Distribution grid investments vs. incremental DER investment or operational changes

Incremental DERs

Distribution

Final bulk-grid resource plan

Final G+T Capacity Expansion

Including initial and incremental DER forecast

Alternative 3: Bulk-grid + DER optimization with parameterized distribution values

Forecasted Loads and DERs

Distribution

Capacity needs assessment

Non-wires alternatives

Distribution studies identify capacity upgrades that can be deferred by DERs

Can use reduced form analysis, e.g., simplified hourly load/resource balance vs. full power flow modeling.

Iterate to converge on balance of distribution grid upgrades and DERs

Calculate Marginal Distribution Grid Value

Step 1. Calculate hourly distribution grid overloads

Step 2. Determine marginal costs to address overloads

Step 3. From 1 and 2, calculate hourly marginal distribution grid avoided costs

Parameterize Distribution Grid Value for DERs

Step 4. Use hourly DER shapes (and/or load flexibility potential) to estimate marginal DER distribution grid values

Step 5. Parameterize DER distribution grid values into tractable capacity expansion inputs, adjusting bulk grid availability accordingly

Parameterization options include aggregation of feeder-level values, creating DER tranches with and without distribution grid value, etc.

Capacity Expansion

Generation

Transmission

DERs

Designing integrated planning processes to complement decision-making processes

1. Process alignment

Align planning and decision making

2. Process consolidation

 Combine processes or regulatory proceedings to increase efficiency for planners, stakeholders, and decision makers

3. Organizational restructuring

 Ensure business structure aligns with efficient planning and decision-making

4. Use of pilot projects to validate novel approaches

 Between planning processes validate value stacking and other new opportunities with real-world data Even if a comprehensive value-stacked solution is identified in an integrated planning process, there can be important real-world barriers to feasibly implementing that solution. Without solutions to overcome some of the decision-making barriers, integrated planning analyses may be limited in the scope of investments they can ultimately secure.

Moving towards a more integrated analytical approach

Convene the leaders of all involved planning organizations to align objectives and determine the overall goals of an integrated planning process

Review existing planning processes to identify existing gaps within—or between—processes

Align key inputs, assumptions, and scenarios across planning processes

The *Jog* Phase of Full-System Capacity Expansion Modeling of the Electricity System

Data and Model Development

Create new data needed for integrated planning including enhanced spatial granularity of load and DER forecasts, enhanced spatial resolution of candidate resource options, and candidate grid upgrades as investment options

Build new modeling capabilities including making generation and transmission co-optimization a standard practice

Process Refinement

Create an integrated planning process through which these new data can be incorporated into expanded models and decision-making processes

Carefully examine and potentially refine planning and decision-making processes

Increase the planning horizon of distribution planning processes, identify locationally defined grid needs, use hourly data to identify hourly overload amounts, and identify marginal distribution system costs

The *Run* Phase of Full-System Capacity Expansion Modeling of the Electricity System

Consider DER co-optimization or iterative processes for DER and customer program planning that ensure consistent valuation of supply- and demand-side resources

Consider locational grid needs and related DER investment opportunities, such as distribution deferral

Use a comprehensive avoided-cost framework to inform retail rate design and align customer incentives with grid needs