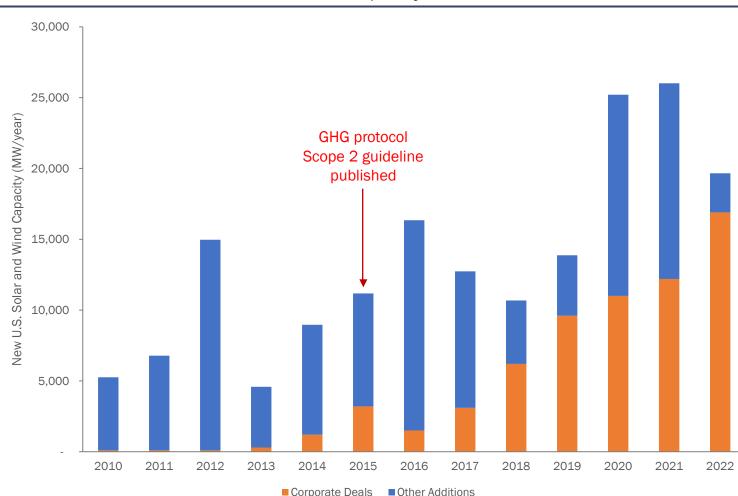

GOING BEYOND MWH

Marginal Emission Rate and Its Application in Voluntary Clean Energy Investments

Hank He August 10th, 2023

Table of Content

www.tcr-us.com



Voluntary Procurement

& the GHG Protocol Scope 2 Guidelines

Voluntary procurement added 40% of RE additions in the past decade

New Solar and Wind Capacity Addition in the U.S

- Over the past decade, U.S. power grid added ~150 GW of new solar and wind capacity
- Corporate voluntary procurement account for about <u>40%</u> (65 GW) of that addition.
 - 48% of Fortune 500 companies committed to carbon neutral by 2050

Data source: EIA 860, CEBA deal tracker

GHG protocol incentivizes procuring MWh of REC

- GHGP scope 2 guideline allows corporation to use a combination of
 - MWh matching via vPPAs and/or unbundled RECs, &
 - Average emission rate

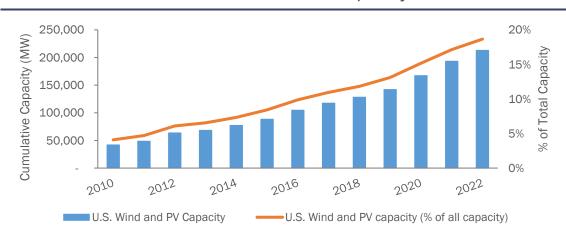
to track their emission

- Example 1:
 - U.S. based company with 100 GWh of load, and 100 GWh of RECs

Emission : 100 GWh – 100 GWh = 0 net load, 0 emission

- Example 2:
 - U.S. based company with 100 GWh of load, and 50 GWh of RECs

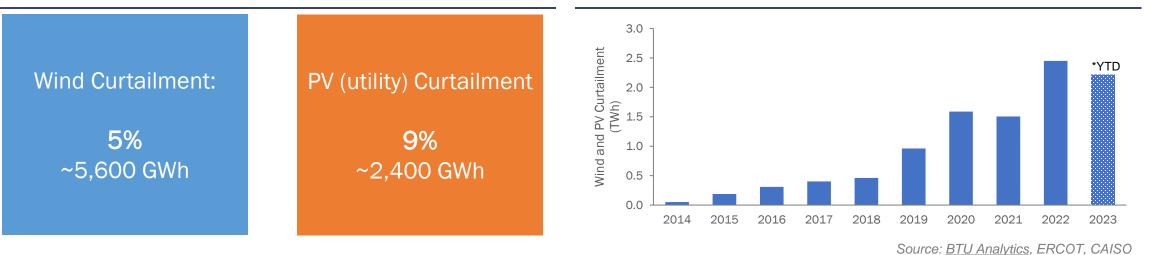
Emission : (100GWh – 50 GWh) x 855 lbs. $CO_2/MWh^1 = 42$ million lbs. CO_2



New guidance is needed for an evolved grid

Locational Marginal Emission Rate

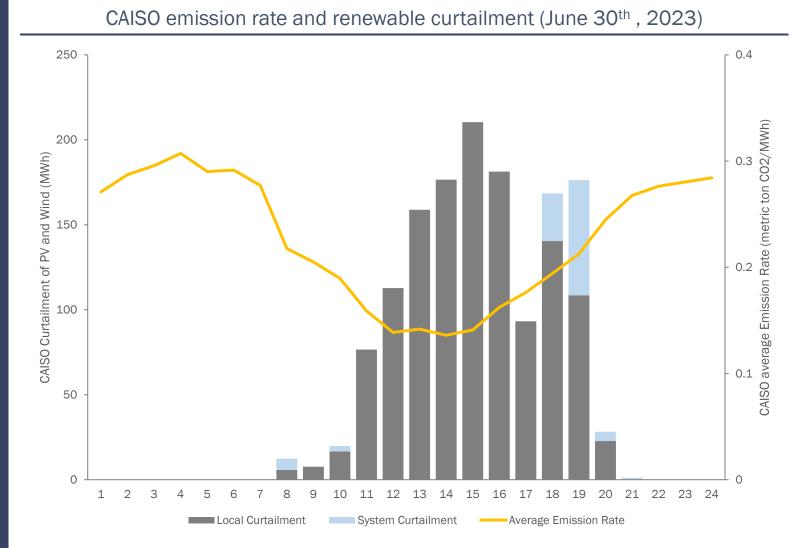
RECs are not the same


U.S. solar and wind capacity

ERCOT 2022 Curtailment Stats

 GHGP kickstarted corporate voluntary procurement and added significant renewable capacity to the grid

- RECs do not distinguish projects'
 - \circ Location, and
 - o generation profile
- RECs and average emission do not reflect physics of grid emission


CAISO Curtailment of Solar and Wind

8/10/2023

Average emission rate does not provide sufficient information

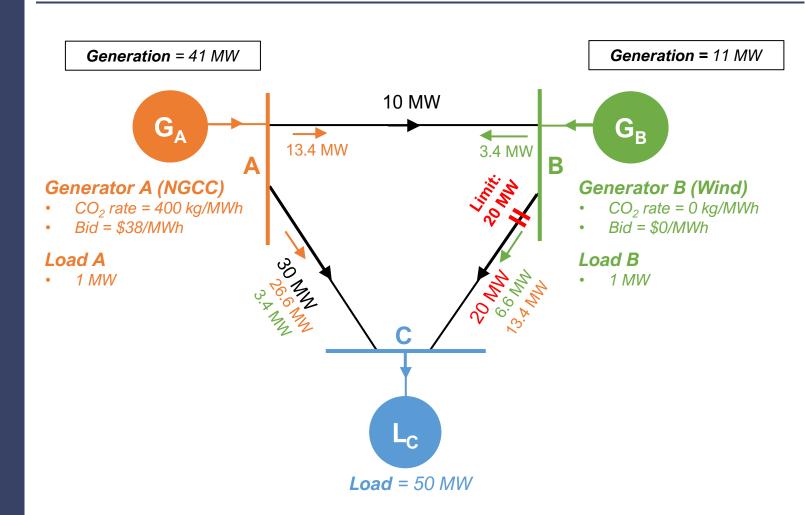
- Average emission rate suggest
 - Shift load to mid-day
 - Increase zeroemission generation in the morning and later afternoon
- Curtailment data shows more intricate detail
 - Mid-day curtailment is local: not all area sees low emission
 - High curtailment at late afternoon: more zero-emission gen has no impact

Source: CAISO, managing oversupply

Emission on the grid is time and location sensitive, same as LMP

- Incremental change of energy injection/withdrawal changes system dispatch
 - Cost impact = Locational Marginal Price (LMP)
 - Emission impact = Locational Marginal Emission Rate (LMER)
- Locational marginal emission rate (LMER) can be calculated for every node on the grid at a given time

$$MER_{node} = \frac{\Delta(CO_2)_{system}}{\Delta(Demand)_{node}}$$


Change in system CO₂ emissions for an incremental MW of load at

- 1. given location; and
- 2. given time

8/10/2023

LMER reflect nodal impact on emission

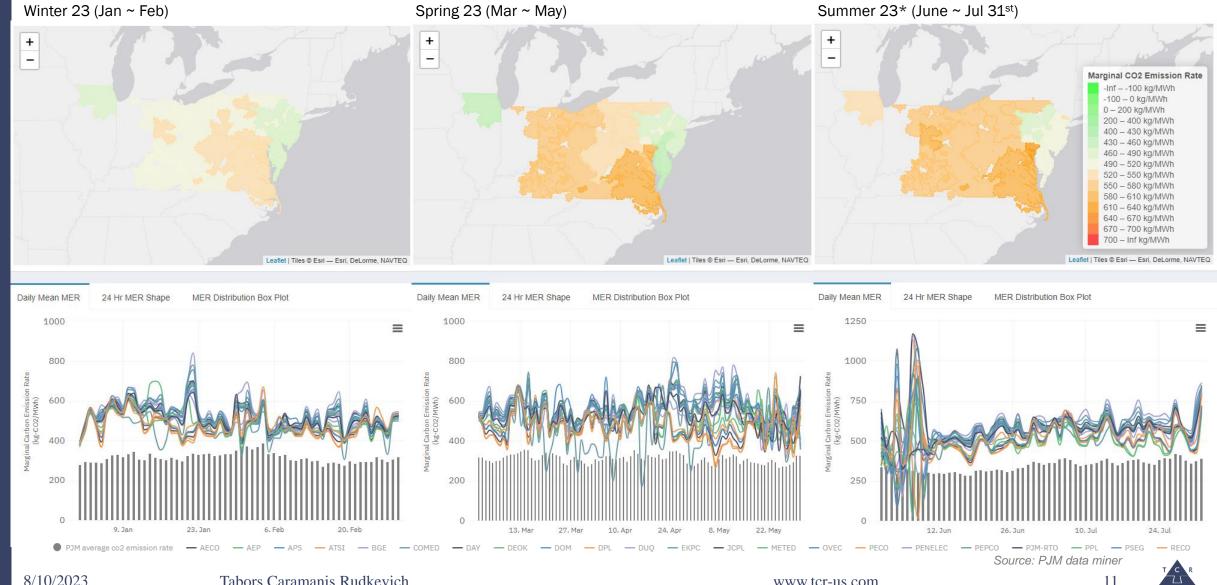
LMER calculation for a sample system

Total cost = 38*41

- \$1,558

- \$29.96/MWh

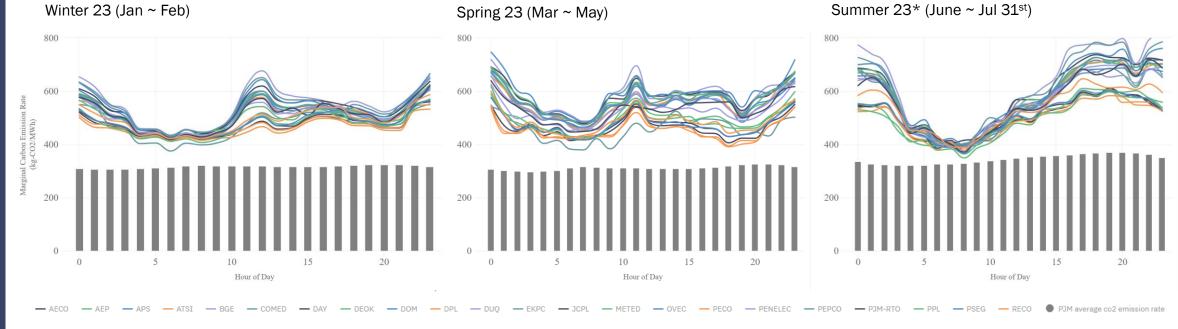
- Total emission = 41 *400
 - 16,400 kg-CO₂
 - 315.4 kg-CO₂/MWh


Increase 1 MW load at C requires Decrease generation at B by 1 MW Increase generation at A by 2 MW

Node	LMP (\$/MWh)	LMER (kg-CO ₂ /MWh)	Avg Emission (kg-CO ₂ /MWh)
А	38	400	
В	0	0	315.4
С	76	800	

8/10/2023

PJM LMER shows significant locational difference



8/10/2023

Tabors Caramanis Rudkevich

www.tcr-us.com

PJM LMER exhibits material hour by hour variation

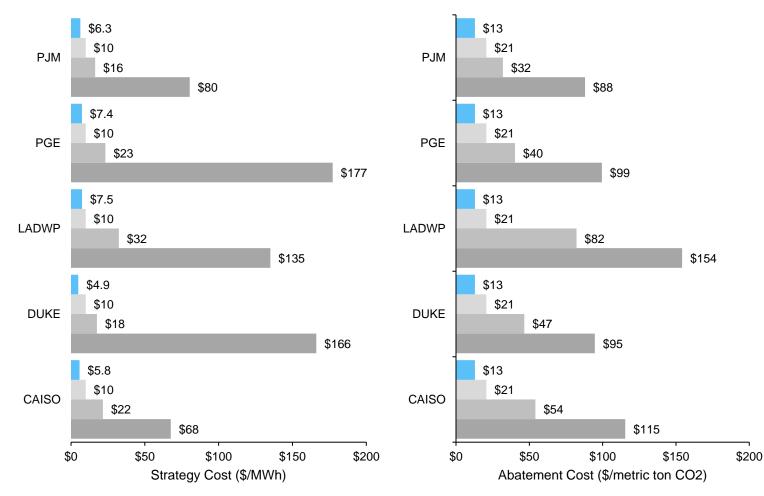
Source: PJM data miner

12

8/10/2023

Going Beyond MWh

How LMER can advance grid decarbonization



Going beyond MWh

- LMER can help buyers optimize site selection and maximize amount of carbon displaced per \$ invested in clean energy projects
- LMER can provide signal for load/DER and storage to
- LMER can assign carbon impact to transmission assets, therefore allow corporate sustainability capital to take part

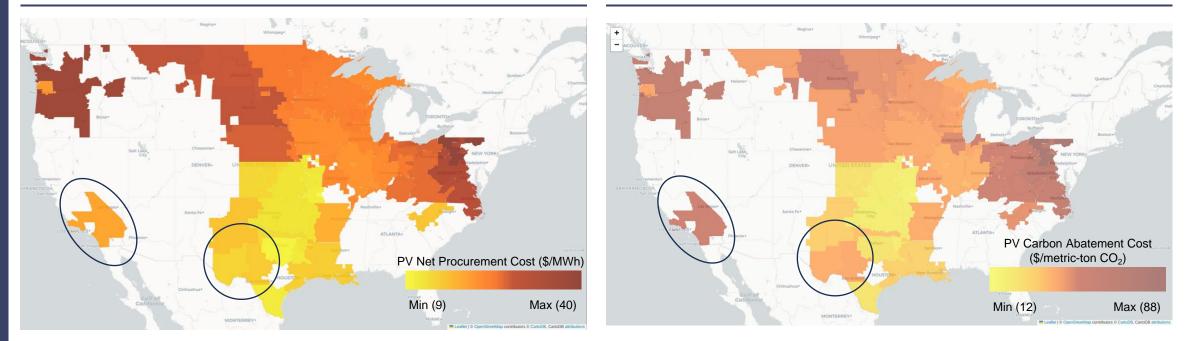
LMER can maximize carbon impact of RE investments

Comparison of decarbonization strategies

- Translate MWh into carbon impact
- Avoid local matching constraint
 - Expensive
- Target areas and projects that have the maximum carbon displacement
 - Low abatement cost
 - High carbon ROI

Carbon Matching Annual Energy Matching Local Annual Energy Matching Hourly Energy Matching

Source: TCR Path to Carbon Neutrality White Paper, June 2023



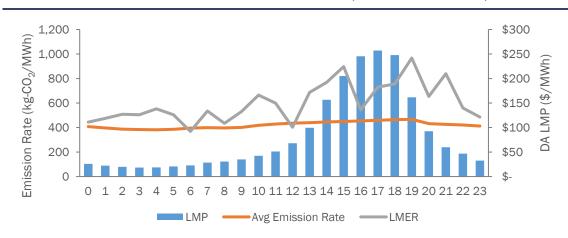
LMER tracks carbon impact

PV Net Procurement Cost (\$/MWh)

PV Carbon Abatement Cost (\$/'000 kg-CO₂)

- LMER reflect transmission congestion and local gen mix
 - CAISO: reasonable PPA, but low displacement potential
 - ERCOT: low PPA, frequent congestion

Source: TCR Path to Carbon Neutrality White Paper, June 2023



LMER provides signal for DR and storage to reduce emission

- Most demand response and storage assets are used for revenue generation /peak reduction with little regard for carbon emission
 - A retrospective study found that 80% of ERCOT's utility battery projects were carbon positive¹
- LMER can provide better signal for DE and ES to reduce carbon emission
 - Direct emission signal
 - More pronounced variation than average emission = encourages more cycling

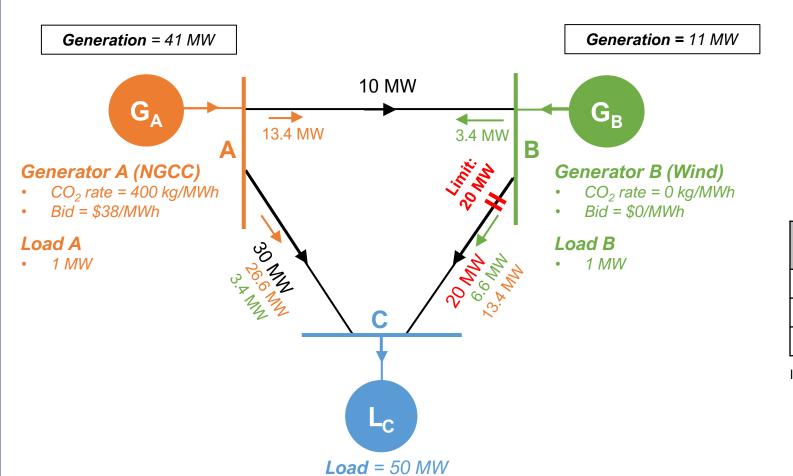
PSEG LMP and emission rates (2023 JUL 27th)²

	Emission Footprint (kg-CO ₂)	Energy Revenue (\$)	Carbon Abatement Cost (\$/kg-CO ₂)
Revenue Maximizing	- 8,585	\$ 8,777	\$ -1.02
Emission minimizing using average emission	- 5,779	\$ - 6,947	\$ 1.2
Emission minimizing using LMER	- 19,444	\$ 1,333	\$ - 0.07

Sample 10MW/40MWh battery performance

Source: 1. Tierra Climate White Paper, Aug 2023; 2. PJM data miner

Energy Storage Solutions Consortium (ESSC)


Transmission is key to energy transition, but...

- Transmission has received virtually no attention in corporate voluntary CE procurement
 - It does not produce RECs
 - No way to account for emission benefit of transmission assets
- A greener grid will not happen unless we improve transmission, we need:
 - New lines
 - Grid Enhancing Technologies

LMER reflect nodal impact on emission

LMER calculation for a sample system

 Increasing line B-C limit by 1MW would reduce system emission by

- 1,200 kg

Node	LMP (\$/MWh)	LMER (kg-CO ₂ /MWh)	Avg Emission (kg-CO ₂ /MWh)
А	38	400	
В	0	0	315.4
С	76	800	

Increase 1 MW load at C requires Decrease generation at B by 1 MW Increase generation at A by 2 MW

21

LMER provides a way to allocate system emission to each asset on the network, including transmission assets

Average emission accounting

	Generation (MW)	Plant Emission Rate (kg-CO ₂ /MWh)	Scope 1 Emission (kg-CO ₂)
Generator A	41	400	16,400
Generator B	11	0	0
Total Scope 1			16,400

16,400	G _A 13.4 MW 3.4 MW
0	A Generator A (NGCC) • CO_2 rate = 400 kg/MWh • $Bid = $28/MWh$ • $Bid = $28/MWh$
16,400	• CO_2 rate = 400 kg/MWh • $Bid = $38/MWh$ • $Bid = $0/MWh$
	Load A Load B
e 2 Emission kg-CO ₂)	• 1 MW
315	
315	
15,770	L _c
16,400	
	Load = 50 MW

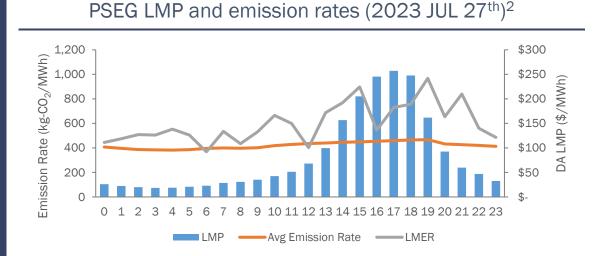
10 MW

	Load	Grid Avg Emission Rate (kg-CO ₂ /MWh)	Scope 2 Emission (kg-CO ₂)
Load A	1	315.4	315
Load B	1	315.4	315
Load C	50	315.4	15,770
	Total Scope 2		16,400

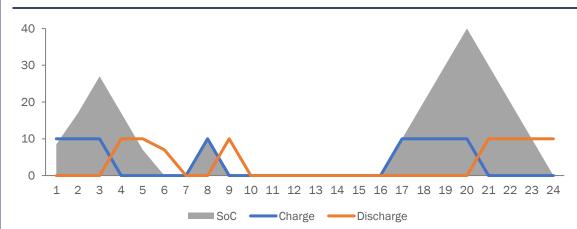
22

Recap

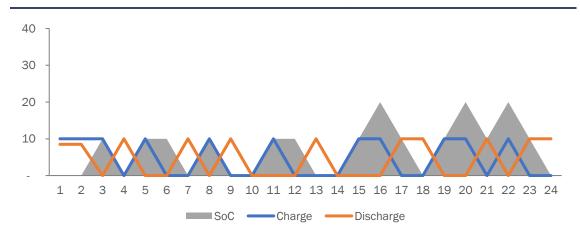
- LMER provides a transparent and reliable way to report granular emission date
 - Nodal
 - Hourly/sub-hourly
- LMER provides a new way to re-distribute system emission to every asset on the grid
- LMER provides the right information for advancing grid decarbonization:
 - Improve renewable project selection for maximizing carbon displacement
 - Optimize demand response (DR) and energy storage (ES) operation to reduce emission
 - Provide carbon impact value for non-generation assets, especially transmission.


THANK YOU

Hank He Email: <u>hhe@tcr-us.com</u> LinkedIn: <u>linkedin.com/in/hhe</u>



Simple optimization of 10MW/40MWh battery operation


Emission Minimizing (Avg Emission)

Simple Optimization Performance

	Emission Footprint (kg-CO ₂)	Energy Revenue (\$)	Carbon Abatement Cost (\$/kg-CO ₂)
Revenue Maximizing	- 8,585	\$ 8,777	\$ - 1.02
Emission minimizing using average emission	- 5,779	\$ - 6,947	\$ 1.2
Emission minimizing using LMER	- 19,444	\$ 1,333	\$ - 0.07

Emission Minimizing (LMER)

