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* Aim is to understand the impact of weather and
climate on the energy sector, and to develop new
ways to exploit weather and climate information for
energy risk management.

* Address a range of energy sector issues, including:

* Wind farm modelling

* Resource characterisation

* Extreme events and insurance

* Forecasting and energy trading
« System integration

* Impacts of future climate change
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The weather that matters

* Quantification of extremes with observed power system
data is difficult as the data is inhomogeneous due to rapid
growth of renewable generation

* UK currently has 21GW wind power, 13 GW solar power

* How can we forecast:
* Wind power ramps

* Peak Load
* Peak renewable days

First we need to know what we’re looking for... 5



The weather that matters: using B
reanalysis

* Reanalysis based climatologies provide a good way of assessing extreme
weather in power systems

+ ~40 year reconstruction of atmospheric circulation => feed through wind turbine
model

+ Result: consistent reproduction of country-aggregate wind power generation (or
solar or demand) with a fixed system setup
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Model and data freely available: °

www.met.reading.ac.uk/~energymet Cannon et al., (2015)



http://www.met.reading.ac.uk/~energymet

The weather that matters: wind @
power ramps

* Rapid growth of wind power capacity in UK (~1GW in 2009, 13GW in 2015, up to
~50GW in 20307?)

* Quantification of extremes with observed

power system data is difficult as the data is
inhomogeneous:

« 2012 extreme: CF<6% for 3 days
- Was this a bad, good or indifferent year?

To estimate system extremes
you need a good climatology

to distinguish the probable
from the possible
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The weather that matters: B8 Kot

Peak renewable days
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At present in the UK peak renewable day
happens in either Spring or Autumn. g "
+ 31 peak days occur on weekends when %
demand is low, but not exclusively (red dots) "g %
* Reanalysis allows us to remove exogenous g .
factors (e.g. weekday) from the modelling g
S .
Sl mm l
Mo‘nth
607 " B i .. ;f :‘%ﬂvd::aa:‘adlem demand
551 '\ .'\ 5
; B ’- o/ \ = 4 ,f \. . j
B — o v | - 2 o )
ARV AY '/\' ' f// \\‘ /N.\\ f\ : ‘\,/\\ [~
st \/ \ / ~/ \/ \' /\\,/
as - Y ./ . Y J
| | i | l 8
1‘)‘80 1985 1990 1995 2000 2005 2010 2015

Proportion of demand from renewables (%)

vear Drew et al., (2019)



The weather that matters: Peak 8y
Load

* Not all weather/climate variations
are equally important for power
system operation

- Peak Demand: dependent on
high pressure centred NE of the
UK

« Peak Demand-net-wind:
dependent on high pressure
centred North of the UK

Temperature anomaly Wind speed anomaly

NOWIND

MED (30GW)

Weather conditions of interest
depend on the system set-up and

the property you are trying to
forecast

Bloomfield et al., (2018)



Forecasting power system B3 Reading
relevant events

« Short range forecasts: 12-72 hours ahead for operations, example of
wind ramps

- Extended-range/Long range forecasts: probabilistic forecasting 3-10
days ahead/30+ days, an example of system stress indicators

» Future system design: robustness under a changing climate

Operational Grid management, plant scheduling . "
seconds — days Anticipating extreme weather n a‘t | O n a | g r | d
Trading Maintenance/resource planning

days — 1 year Longer-term wholesale energy contracts S 2 S 4 E
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Planning Impacts of climate change

climate change Trade-off between climate change and energy system FEIH HUERA
change
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Short-range: UKV 1.5km model ®iesan
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« Wind power ramp not captured clearly if
precise turbine locations used.

* Improved by considering maximum wind
speed within 10 km area around each
turbine.

» Feature present 24 hours ahead.
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Capacity factor (%)

Capacity factor (%)

Short-range: 2.2km 11 member B

natlonalgrld

* 4 hr ramping — caused by frontal features associated with low pressure
systems

- Small scale phenomena need to be captured by forecast models
- Feature not captured when forecast uses ensemble mean wind speed.
- Need the information of the ensemble members
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Extended/Long-range o >220F BResae

* Energy is a major target sector for climate service development

- ECEM and CLIMAPOWER (EU Copernicus); e.g.: http://
ecem.wemcouncil.org

- S254E, SECLIFIRM, CLIM4RES (EU H2020); e.g.: hitps://s2s4e.eu

 There is sKkill in forecasting weekly-/monthly-/seasonal- demand, wind,

Circulation
“pattern”
forecast

¥ Statistical models
Surface impact

(demand, wind

power, solar

Statistical power, hydro, ...)
corrections

NWP ensemble

grid point
forecast

13
See, e.qg., Lynch et al 2014; Scaife et al, 2014; Clark et al 2017; Thornton et al 2018
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Medium-range:
grid point
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Medium-range: Patterns 3g S254E @

Weather patterns: predictable but
weak link to surface weather & demand
over regions of interest

Nov-Mar Demand

MSLP

NAO-

NAO+

Impact Patterns: unknown
predictability (work in progress) but
good links to surface weather &
impacts
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Bloomfield et al., (in prep)



Medium-range: Patterns

“

Unlvetsltyof
Reading

Impact Patterns: Potential predictability is good due to their construction based on

the impacted system. Next steps is checking in the forecasts...
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Future system design FRIMAVER] = g

Climate is global, not local

 Climate impacts on power system design poorly understood and typically rely on
relatively coarse-resolution global climate models

« Fundamental questions as to whether climate processes affecting energy are well-
understood and represented (e.g., hydrological cycle, Roberts et al 2018; surface
winds, Gonzalez et al 2019)

PRIMAVERA: a flagship EU research programme (€15m over 5 years)

* Next-generation, multi-model, climate simulations

* Unprecedented high global resolution (~20-50 km at 50°N)
- Improved representation of underlying processes driving the climate

+ Tailored high resolution, high frequency dataset designed for energy modelling
- Sub-daily wind, temperature, solar, precipitation

« Engaging with energy users — if interested, please contact
d.j.brayshaw@reading.ac.uk

* Website - https://uip.primavera-h2020.eu
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https://uip.primavera-h2020.eu

Concluding remarks B o

 To estimate system extremes you need a good climatology to distinguish
the probable range of possible events

» Weather conditions at impact extremes depend on the system set-up and
the property you are trying to forecast

 Physically-based forecasts can be a powerful tool from days-seasons
ahead

- Statistical forecasting methods and significant amounts of model calibration
can increase the value of forecasts at longer lead-times.

* Challenges:

 Impact chain — from climate data, to specific meteorological drivers of
system behaviour, to impacts in complex power system models

- Modelling hierarchy — to understand the full impact chain both simple
and complex models are required

- Incorporating large climate datasets into power system models

- How to integrate forecasting into effective decision making?
18



Contact us: B8 i

For more information contact me: h.c.bloomfield@reading.ac.uk

and see:

S2S4E https://s2sde.eu/
PRIMAVERA https://uip.primavera-h2020.eu
Energy-met@Reading https://research.reading.ac.uk/met-energy/
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