ESIG Forecasting/Markets Workshop

Ed Rothberg CEO, Gurobi Optimization June 2, 2020

The World's Fastest Solver

Are You Solving the Right Model?

- Rare for optimization model to solve the 'right' problem
 - Always some simplifications
- Important to periodically step back and consider the current context

Choosing the Appropriate Optimization Grain


- George Dantzig inventor of the simplex method (1946)
- "At a little bull session at the Pentagon with the Bureau of Labor's input/output team, Marvin Hoffenberg suggested we test [the newly proposed simplex method] on Jerry Cornfield's diet problem. Jerry said that he had worked on the problem several years earlier for the Army who wanted a low cost diet that would meet the nutritional needs of a GI soldier."

Choosing the Appropriate Optimization Grain

- Leonid Kantorovich inventor of linear programming (1939)
- The Mathematical Method of Production Planning and Organization (1939)
- The Best Uses of Economic Resources (1959)

Perpetual Push-Pull In Nearly Every Industry

Airlines

- Split aircraft scheduling from crew scheduling
- Split maintenance scheduling from aircraft scheduling
- Split schedule creation from aircraft scheduling
- Split gate assignment from schedule creation

Supply chain

- Split production planning from logistics
- Split production planning from inventory management
- Limited upstream/downstream visibility
 - The bullwhip effect

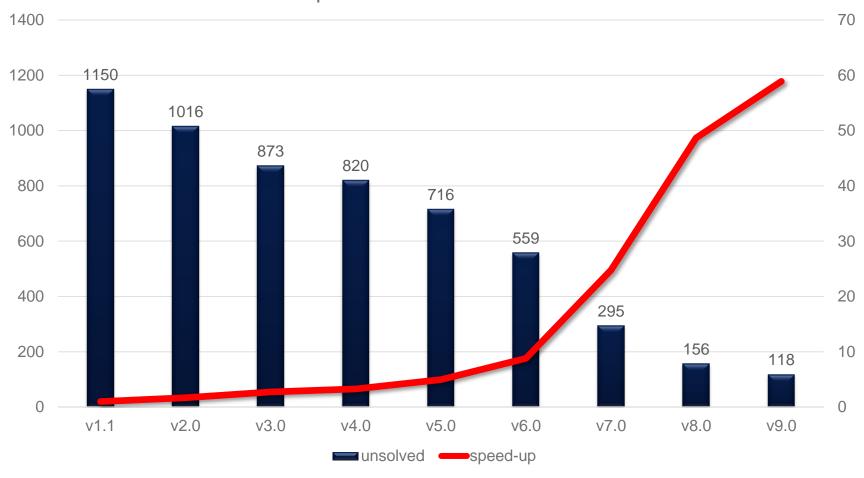
Sources of Increasing Demand

More detail

- Capture complex, detailed behavior
 - Combined-cycle plans

More precision

- Capture behavior at finer time scales
 - 15-minute dispatch intervals


Broader scope

- Tighter integration of power and gas markets
- Uncertainty

Improvements in Underlying Technology

Comparison of Gurobi Versions

Improvements in Underlying Technology

- On 70 MISO test models
 - Real MISO SCUC datasets
 - 39% average performance improvement in the last year

Increasing Demand – 15-Minute Dispatch

- Move from 60-minute dispatch interval in SCUC to 15-minute interval
- Roughly 4X increase in problem size
- Growth in runtime?
 - 26X increase in root relaxation solve time
 - 11X increase in time to proven 0.1% optimality gap

HIPPO Project

- ARPA-E funded project
- A solution framework for day-ahead SCUC based on parallel and concurrent optimization

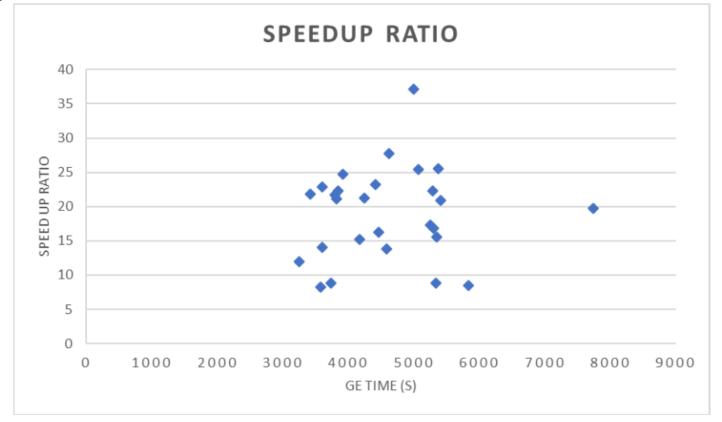
Decomposition Approaches

- Parallelism opens up a new dimension
- Decomposition an 'obvious' source of parallelism
 - Bender's decomposition
 - ADMM (Alternating Direction Method of Multipliers)
- Extensive experimentation

Decomposition Approaches

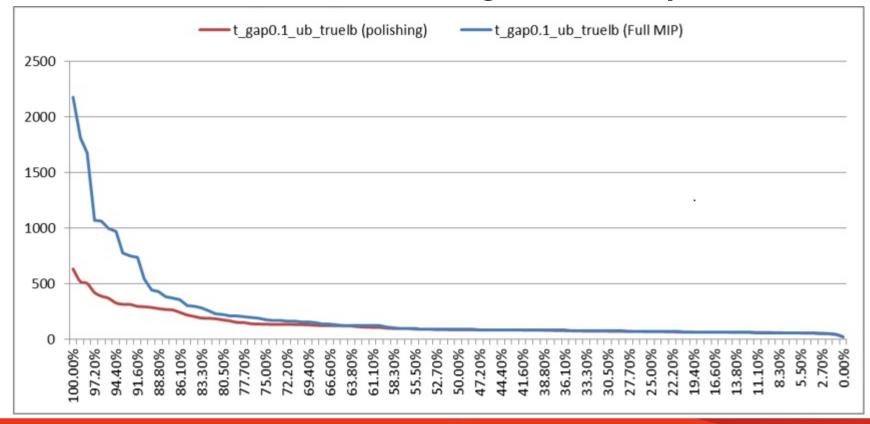
- You have to be an artist
- One clear tradeoff: solution accuracy
 - Traditional tolerance in optimization: 1e-6
 - Challenging tolerance for decomposition: 1e-2
- Decoupling in solution technique must match decoupling in the underlying problem

Example: SFT in Unit Commitment


Simple decoupling

- Solve MIP with a subset of transmission constraints
- Add transmission constraints violated by new solution
- Repeat

HIPPO Project – Tighter Integration


- Undo decoupling (while exploiting parallelism):
 - ~10X improvement in overall solution time

HIPPO Project - Heuristics

- Solving the 'right' problem?
- Optimization as a toolkit for building domain-specific heuristics

