An IBR Future

Julia Matevosyan
Lead Planning Engineer, Resource Adequacy

Where are we today?

NOTE: All systems in this graph are independent synchronous AC power grids and based on 2021 data

Where are we headed?

Instantaneous penetration of wind was 66.47% on 3/22/21 at 12:46am

Cumulative MW Planned include projects with signed interconnection agreements
What are the issues?

• System services inherently provided by synchronous machines are becoming scarce and need to be provided by IBRs

• **Frequency Stability**
 – Low inertia leading to high RoCoF after contingencies
 – Too fast frequency control may introduce oscillations in lower inertia systems
 – Common mode events resulting in loss of multiple IBRs

• **Voltage and Angular Stability**
 – Long distance high power transfer (wind and solar IBR often far from load)
 – Convergence of voltage stability limits on normal voltage range, brittleness of the system
 – Low system strength, voltage oscillations

• **Control Stability**
 – Control interactions
Will we all get see same issues at the same time?

- Small electrical (el.) islands, e.g. Hawaii, are the first to experience a number of issues at once, but are more meshed, coordination is easier, solutions are not necessarily scalable for larger systems;

- Medium el. islands, e.g. Ireland, more meshed, frequency is an issues before other challenges;

- Large el. islands, e.g. GB, ERCOT and mainland Australia, further challenges due to IBRs being far from load centers, in weak grid locations.

- Geographically Large Interconnected Systems, e.g. Central Europe, EI and WI in the U.S., no issues with IBRs for intact system, but high concerns during system splits.

System characteristics and IBR impacts

Frequency Stability Risks

<table>
<thead>
<tr>
<th>Occasional</th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Under intact system</td>
<td>• Frequency control concerns can limit operation;</td>
<td>• System often has risk of substantial frequency control problems and high RoCoF.</td>
</tr>
<tr>
<td>conditions, the system is relatively immune to fast and severe frequency events;</td>
<td>• Periods of poor frequency containment during credible events;</td>
<td></td>
</tr>
<tr>
<td>• Challenges tend to be weighted towards congestion management.</td>
<td>• Control of frequency following possible or planned system splits is difficult.</td>
<td></td>
</tr>
</tbody>
</table>

CE- Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii

System characteristics and IBR impacts

Voltage and Angle Stability Risks

<table>
<thead>
<tr>
<th>Local</th>
<th>Regional</th>
<th>System-wide</th>
</tr>
</thead>
</table>
| • Electrical distances are limited;
 • Interface collapse and system separations a remote concern; Local voltage support issues possible. | • Significant power imports and exports with dynamic constraints being an occasional factor;
 • Separation tends to be a high-impact low-frequency event. | • System has high power transfer over ac transmission interfaces, for which voltage instability and angular separation is a primary concern and often imposes operating constraints. |

CE- Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii
System characteristics and IBR impacts

Control Stability Risks

<table>
<thead>
<tr>
<th>Local</th>
<th>Regional</th>
<th>System-wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Some specific locations (e.g. individual nodes or small areas) with low system strength and risk of control interactions.</td>
<td>• Entire regions of very high IBR and little or no synchronous generation with ac transmission to other stronger areas.</td>
<td>• Entire system has extended periods of very low or even zero synchronous short circuit contribution.</td>
</tr>
</tbody>
</table>

CE-Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii

What can IBRs help with?

- **Grid Forming** vs **Grid Following**
- **Basic Trait** vs **Grid Service**

Grid Following
- Controlled Current Injection
- Requires minimum grid strength to establish grid voltage waveform
- Unique to Grid-Following Inverters

Controlled Internal Voltage Phasor
- Voltage persistence and inertia:
 - Intrinsic for synchronous machines
 - Designed service for grid-forming inverters
- Blackstart & Island Operation

Closed-Loop Voltage Control
- Fast Frequency Response
- Primary Frequency Response
- Automatic Generation Control & Dispatchability
- Stability Services

Functionality possible for all IBRs, independent of inverter type

Grid-Forming and Synchronous Machines

What is state-of-the-art for Grid-Forming (GFM) IBRs?

• **BESS in St. Eustatius Island**
 - 2.3 MW peak load, 100% (Solar + storage) operation mode during daytime
 - Load distribution across several parallel GFM units (no communication)
 - Seamless and immediate load transfer after loss of all gensets at peak load

• **Dersalloch Wind Farm in Scotland**
 - 69 MW of wind turbines operated in GFM mode for 6 weeks
 - Wind farm responded to both large underfrequency events and phase steps
 - Island operation (with 7 MW load) and blackstart of wind turbines to energize wind farm and re-synchronize with the grid

• **Dalrymple BESS in South Australia**
 - 30 MW/8 MWh battery connected close to 91 MW wind farm and 8 MW load
 - Provision of inertia, islanded operation, black start capability, weak grid operation, fast active power injection as special protection scheme
 - In the first 6 months, reduced loss of supply in the area from 8 hours to 30 min

• **Hornsdale BESS in South Australia**
 - 150 MW/194 MWh BESS co-located with wind farm, testing Virtual Machine Mode on two inverters
 - Recently in 2020, provided inertial response during a large grid disconnection event

Are we stuck?

Great Britain (NGESO)
- Stability Pathfinder Phases 2 & 3
- Minimum Specification Required for Provision of GB Grid Forming Capability (GC0137)
- Pathfinder Phase 3 will use GC0137 as of Nov 2021 (further changes will not be required from Phase 3 awardees)
- Will maintain Best Practice Guide

Australia (AEMO):
- AEMO requirement for inertia and system strength
- AEMO Advanced Inverter White paper, gradual approach

Hawaii:
- Hawaiian Electric Island – Wide PSCAD Studies report, recommends requiring GFM in new BESS for future projects. Clarity on GFM technical requirements should be improved

OEMs: No clear specs and demand to develop GFM technology

Operators: Challenging to require functionalities from IBRs that are not widely available

Developers will only build to requirement or incentive

Shrinking market volumes for OEMs

Operational Constraints

More difficult to connect further IBRs
What is still missing?

Stakeholder ecosystem

- Regulators
- System / Grid operators
- Transmission companies
- Generation utilities
- Distribution utilities
- Developers & Investors
- OEMs

Well-defined Services and Performance Verification Procedures

Codes, Standards and Incentives

Appropriate Study Tools

Understanding of Capabilities and Limitations,
Understanding of Cost Implications,
Appropriate Models.

What can you do?

How much does it cost?

What do you need?

Grid Owner/Operator

Equipment Owner

OEM
Thank you! Questions?

Julia Matevosyan
julia.matevosyan@ercot.com