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Where are we today?
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Where are we headed? 
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Instantaneous 
penetration of wind 

was 66.47% on 
3/22/21 at 12:46am
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What are the issues?

• System services inherently provided by synchronous machines are becoming 

scarce and need to be provided by IBRs

• Frequency Stability

– Low inertia leading to high RoCoF after contingencies

– Too fast frequency control may introduce oscillations in lower inertia systems 

– Common mode events resulting in loss of multiple IBRs

• Voltage and Angular Stability

– Long distance high power transfer (wind and solar IBR often far from load)

– Convergence of voltage stability limits on normal voltage range, brittleness of 

the system

– Low system strength, voltage oscillations 

• Control Stability

– Control interactions
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Will we all get see same issues at the same time?

• Small electrical (el.) islands, e.g. 

Hawaii, are the first to experience a 

number of issues at once, but are more 

meshed, coordination is easier, 

solutions are not necessarily scalable 

for larger systems;

• Medium el. islands, e.g. Ireland, more 

meshed, frequency is an issues before 

other challenges;

• Large el. islands, e.g. GB, ERCOT and 

mainland Australia, further challenges 

due to IBRs being far from load 

centers, in weak grid locations. 

• Geographically Large Interconnected

Systems, e.g. Central Europe, EI and

WI in the U.S., no issues with IBRs for

intact system, but high concerns during

system splits.
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Source: https://www.aemo.com.au/-

/media/Files/Electricity/NEM/Security_and_Reliability/Future-

Energy-Systems/2019/AEMO-RIS-International-Review-Oct-

19.pdf

https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Future-Energy-Systems/2019/AEMO-RIS-International-Review-Oct-19.pdf
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System characteristics and IBR impacts
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Frequency Stability Risks

Occasional Acute Chronic

• Under intact system 

conditions, the system 

is relatively immune to 

fast and severe 

frequency events; 

• Challenges tend to be 

weighted towards 

congestion 

management.

• Frequency control 

concerns can limit 

operation; 

• Periods of poor 

frequency 

containment during 

credible events;

• Control of frequency 

following possible or 

planned system 

splits is difficult.

• System often has risk 

of substantial 

frequency control 

problems and high 

RoCoF.

CE- Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii

Source: J. Matevosyan, et al. Future with Inverter-Based Resources, IEEE PES 

Power and Energy, Nov/Dec 2021 
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System characteristics and IBR impacts
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Voltage and Angle Stability Risks

Local Regional System-wide

• Electrical distances are 

limited; 

• Interface collapse and 

system separations a 

remote concern; 

Local voltage support

issues possible.

• Significant power 

imports and exports 

with dynamic 

constraints being an 

occasional factor; 

• Separation tends to 

be a high-impact 

low-frequency event.

• System has high 

power transfer over 

ac transmission 

interfaces, for which 

voltage instability 

and angular 

separation is a 

primary concern and 

often imposes 

operating 

constraints.

CE- Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii

Source: J. Matevosyan, et al. Future with Inverter-Based Resources, IEEE PES 

Power and Energy, Nov/Dec 2021 
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System characteristics and IBR impacts
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Control Stability Risks

Local Regional System-wide

• Some specific 

locations (e.g. 

individual nodes or 

small areas) with low 

system strength and 

risk of control 

interactions. 

• Entire regions of 

very high IBR and 

little or no 

synchronous 

generation with ac 

transmission to other 

stronger areas.

• Entire system has 

extended periods of 

very low or even 

zero synchronous 

short circuit 

contribution.

CE-Central Europe, TX-Texas, GB-Great Britain, AU-Australia, IR-Ireland, HI-Hawaii

Source: J. Matevosyan, et al. Future with Inverter-Based Resources, IEEE PES 

Power and Energy, Nov/Dec 2021 
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What can IBRs help with?
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Source: J. Matevosyan, et al. Future with Inverter-Based Resources, IEEE PES 

Power and Energy, Nov/Dec 2021 
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What is state-of-the-art for Grid-Forming (GFM) IBRs?

• BESS in St. Eustatius Island 

– 2.3 MW peak load, 100% (Solar + storage) operation mode during daytime

– Load distribution across several parallel GFM units (no communication)

– Seamless and immediate load transfer after loss of all gensets at peak load

• Dersalloch Wind Farm in Scotland 

– 69 MW of wind turbines operated in GFM mode for 6 weeks

– Wind farm responded to both large underfrequency events and phase steps

– Island operation (with 7 MW load) and blackstart of wind turbines to energize wind farm 

and re-synchronize with the grid

• Dalrymple BESS in South Australia 

– 30 MW/8 MWh battery connected close to 91 MW wind farm and 8 MW load

– Provision of inertia, islanded operation, black start capability, weak grid operation, fast 

active power injection as special protection scheme 

– In the first 6 months, reduced loss of supply in the area from 8 hours to 30 min

• Hornsdale BESS in South Australia

– 150 MW/194 MWh BESS co-located with wind farm, testing Virtual Machine Mode on 

two inverters 

– Recently in 2020, provided inertial response during a large grid disconnection event
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Source: https://www.esig.energy/event/g-pst-esig-webinar-series-

survey-of-grid-forming-inverter-applications/
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Are we stuck? 
Great Britain (NGESO)

• Stability Pathfinder Phases 2 & 3

• Minimum Specification Required for 

Provision of GB Grid Forming 

Capability (GC0137)

• Pathfinder Phase 3 will use GC0137 

as of Nov 2021 (further changes will 

not be required from Phase 3 

awardees)

• Will maintain Best Practice Guide 

Australia (AEMO):

• AEMO requirement for inertia and 

system strength

• AEMO Advanced Inverter White 

paper, gradual approach

Hawaii:

• Hawaiian Electric Island – Wide 

PSCAD Studies report, recommends 

requiring GFM in new BESS for future 

projects. Clarity on GFM technical 

requirements should be improved
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Operators: 
Challenging to 

require functionalities 
from IBRs that are 

not widely available

Operational 
Constraints

More difficult to 
connect further 

IBRs

Shrinking market 
volumes for OEMs 

OEMs: No clear 
specs and 
demand to 

develop GFM 
technology

Developers will only build 

to requirement or incentive
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What is still missing?

• Regulators

• System / Grid operators

• Transmission companies

• Generation utilities

• Distribution utilities

• Developers & Investors

• OEMs

Stakeholder 

ecosystem

Well-defined Services 

and Performance 

Verification Procedures

Codes, Standards and 

Incentives

What can 

you do?
What do 

you need?

How much 

does it cost?

Grid Owner/

Operator

OEMEquipment 

Owner

Understanding of Capabilities and Limitations, 

Understanding of Cost Implications,

Appropriate Models.

Technology

Appropriate Study

Tools
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Thank you! Questions?

Julia Matevosyan

julia.matevosyan@ercot.com


