## Cloud Nowcasting Using Deep Neural Nets

Eric Grimit, Ph.D. Head of Science – North America Vaisala Xweather



ESIG Forecasting & Markets Workshop – June 11, 2024

### **Solar Power Forecast Limitations**



Baseline: A forecast that considers local observations and NWP only is not very skillful

## Spatial Awareness Could Be Helpful



- NWP-resolved cloudiness reduces the solar power forecast partially, but not enough.
- Past observations (clear-sky adjusted) help in this case, but for the wrong reasons.
- No direct satellite ingredient included in this forecast, but clearly one is needed!

# Satellite-Based Cloud Nowcasting

AMS Glossary of Meteorology Definitions:

Nowcast = 0-3 hours

Very short-range forecast = 0-6 hours



Figure 11. Techniques suitable for different forecasting's horizon and spatial resolution. (L. Ramírez & Vindel. 2016)



## **Cloud Mask Extrapolation**

- Create a binary cloud mask; segment satellite image into cloudy and non-cloudy pixels.
- Assign or compute cloud-motion vectors (CMV) from successive satellite images, atmospheric motion vector retrievals, or NWP model estimates.
- Advect the binary cloud mask forward in time using the CMVs as a forecast.
- This kind of technique is the basis for EUMETSAT's "kinematic extrapolation" product known as EXIM.





### **Optical Flow**

- A method for identifying the pattern of apparent motion of objects and edges with a series of subsequent images.
- Gradient-based estimation of cloud motion vectors (CMV) computed from consecutive images (e.g., Lucas-Kanade, Gunnar-Farneback, or Horn-Schunck methods).
- The resulting CMV field is used to warp the latest image, resulting in a forecast image.
- Can only predict the movement of features found in current image, not longer-term evolutions.
- Physical processes such as orographic lift, convergence, frontogenesis, and convective initiation are not well captured.



**FIGURE 2** The optical flow analysis for satellite images. From Guo et al. (2023) IET Computer Vision



### NCAR Sun4Cast System

- Sun4Cast leverages several observation-based nowcasting technologies, each with its own "sweet spot".
- Includes CIRACast and MADCast components, which take different approaches to satellite-based cloud advection.
- These technologies are blended via the Nowcasting Expert System Integrator (NESI).
- Improvement over smart persistence varies by month/year, lead time and sky condition.
- Over lead times <6h, improvement ranged from 36-56% in all-sky conditions for each component.
- Satellite-based optical flow was not a comparison baseline in this study.



From Figure 5, Haupt et al. (2018) BAMS

### Deep Neural Nets with Satellite Data

- Over the last 5+ years, a number of studies have tested deep learning on satellite imagery for the purpose of better solar energy forecasting.
- Common deep learning model architectures, such as convolutional neural networks (CNNs) and encoder-decoders (U-Nets) were applied to this problem first.

#### **Cloud Cover Nowcasting with Deep Learning** (Berthomier et al. 2020) [Meteo France AI Lab]

- EUMETSAT Met-11 cloud cover analysis
- All selected models improved over persistence
- U-net surpassed AROME, EXIM models



**DeePSat: A Deep Learning Model for Prediction of Satellite Images for Nowcasting Purposes** (Ionescu et al. 2021) [Romania]

- EUMETSAT Met-11, 5 channels
- Improved over a baseline CNN, but not as much as recurrent approaches



Fig. 11. Average MSE of the U-Net model, persistence, EXIM and AROME for each time step of the forecast. The dashed line represent the MSE computed on binarized values.

### Deep Neural Nets with Satellite Data (cont.)

- Later approaches tested model architectures which combine encoders with recurrent units to capture the spatial covariances and time series evolution together.
- Motivation increased because these techniques were shown to significantly outperform both optical flow and state-of-the-art NWP in precipitation nowcasting.
- SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data (Kumareson et al. 2022) [UC Berkeley]:
  - GOES-16 downward solar radiation (DSR)
  - ConvLSTM outperformed HRRR model by 13% in RMSE (daytime 10-15:00) for 4-week test



Xweather

| Grouping             | HRRR RMSE | Model RMSE |
|----------------------|-----------|------------|
| Overall              | 124.9     | 108.6      |
| Low DSR (0-300)      | 165.3     | 135.3      |
| Medium DSR (300-600) | 170.7     | 131.7      |
| High DSR (600+)      | 103.5     | 98.3       |
|                      |           |            |

Cloud Nowcasting with Structure-Preserving Convolutional Gated Recurrent Units (Kellerhals et al. 2022) [U. Amsterdam]

- ConvGRU w/ structure preserving loss function
- Beats optical flow MAE by 9-12% at 1-3h leads; in turn, optical flow beats persistence by 11-17%



**Table 2.** Average percentage differences in accuracy metrics of ConvGRU predictions againstthe optical flow ensemble baseline, grouped by lead time ( $\tau$ ).

| τ  | Model      | $\Delta R^2$ | % <b>Δ</b> <i>M</i> AE | %∆SSIM |
|----|------------|--------------|------------------------|--------|
| 4  | MSE        | 4.27         | -1.78                  | 1.42   |
|    | MAE        | 5.95         | 0.12                   | 3.69   |
|    | Huber      | 6.33         | -2.46                  | 3.12   |
|    | SSIM       | 8.11         | -0.06                  | 8.63   |
|    | SSIM + MAE | 7.63         | -9.27                  | 7.28   |
| 8  | MSE        | 13.43        | -7.42                  | 8.86   |
|    | MAE        | 15.17        | -6.50                  | 10.53  |
|    | Huber      | 16.05        | -2.17                  | 9.92   |
|    | SSIM       | 15.95        | -7.65                  | 13.61  |
|    | SSIM + MAE | 16.43        | -11.95                 | 13.03  |
| 12 | MSE        | 19.23        | -6.38                  | 11.59  |
|    | MAE        | 20.96        | -7.23                  | 12.85  |
|    | Huber      | 22.29        | -0.72                  | 12.31  |
|    | SSIM       | 21.10        | -9.48                  | 15.53  |
|    | SSIM + MAE | 22.21        | -11.18                 | 15.07  |

## Xweather CloudCast

Vaisala's specialist deep neural network (DNN) for satellite-based cloud nowcasting





### Our Approach

#### Multi-Modality:

- Use multiple channel satellite data as inputs and targets.
- Utilizing both visible and infrared radiances benefits the other and assists with the night-to-daytime transition.

#### Image-to-Image Sequences:

- Use a stack of recent images to predict the next few images.
- Retain the native projection and resolution of the source images. No re-mapping or interpolation at this stage.

#### **Timing Requirements:**

- Rapid updates created every 5 min. Use limited-area scan windows. Target 4-5 min as the maximum inference time.
- Create forecasts for the next 3 hours to cover the needs of intra-hour solar power nowcasting with a buffer for failover.

**Training data** (in the native projection of GOES-16 satellite)





## Training Data (GOES-16 Example)

- Primary: GOES-16 CONUS window (5-min)
  - Channel 02 (visible, 0.64 um)
  - Channel 07 (near-infrared, 3.9 um)
  - Channel 14 (infrared, 11.2 um)
  - Level-2 ACMC (binary cloud mask)
- <u>Auxiliary:</u>
  - Elevation (90-m; NASA SRTM)
  - Solar zenith and azimuth angles
  - Forecast lead time (5, 10, ..., 180 minutes)





### **First Attempts**

weather

#### Candidate model architecture evaluation:

- Encoder-ConvLSTM-Attention (similar to Google's MetNet)
  - A leading option from recent precipitation nowcasting advancements, with performance superior to persistence and NOAA's 3-km HRRR
  - Modified to reduce the number of trainable parameters
  - Each target tile only produced a smooth field near the mean value
  - Scene background seemed to confuse the algorithm further
- CoaT-GRU (similar to U. Amsterdam ConvGRU)
  - Co-Scale Conv-Attentional Image Transformer (CoaT) is an efficient image transformer that performs well in classification tasks
  - Gated recurrent units (GRUs) are well suited for sequence-to-sequence prediction tasks and have a smaller number of trainable parameters compared to LSTMs
  - "Off-the-shelf", quick implementation, faster inference time
  - Early performance results immediately showed more realism

#### Encoder-ConvLSTM-Attention



CoaT-GRU



### **Chosen Model Architecture**

CoaT-GRU



- An input data sequence is processed (normalized GOES image modalities).
- The conditional time and the pre-processed data sequence is condensed from 3D to 2D with a ConvGRU layer.
- 2D tensors are processed through a CoAT spatial encoder-decoder module compressing by a factor of 4.
- The conditional time and the CoAT outputs are passed through a number of ConvGRU cells for temporal refinement.
- A set of regression heads expand the predictions into the desired output layers (predicted GOES image modalities).

### **Baseline Comparison Methods**



#### Spectral Prognosis (S-PROG; Seed 2003, Pulkkinen et al. 2019)



weather

 The extra effort and computational costs to train and deploy a deep neural network model should be justified by significantly out-performing baselines.

#### • Benchmarks Considered:

- (weak) Persistence: *nothing changes*
- (moderate) Lagrangian persistence: the background flow is estimated at T=0 and it is held constant (no evolution)
- (strong) Optical flow: the motion field is estimated at T=0 and its evolution is modeled
  - From computer vision: Recurrent All-Pairs Field Transforms (RAFT)
  - From radar/precipitation forecasting: Spectral Prognosis (S-PROG)

### Evolution of Results – Infrared C14



### Final Model Results – CONUS Wide

![](_page_16_Figure_1.jpeg)

- Validation for 0-3 h CloudCast predictions of GOES-16 (East) satellite images over whole CONUS area for infrared radiance (channel 14) shown at left and visible radiance (channel 2) at right.
- 24% and 50% improvement in MAE at 30 min lead time compared to best optical flow baseline method.
- Smaller percentage improvements at shorter lead times and larger skill at longer lead times.

### Final Model Results – By Climate Region

![](_page_17_Figure_1.jpeg)

 For infrared radiance (channel 14) predictions at 30 min ahead, we see a 41% improvement over optical flow in the SW USA (climate region 3) and 20%-30% elsewhere.

![](_page_17_Picture_3.jpeg)

### Final Model Results – By Region & Lead Time

![](_page_18_Figure_1.jpeg)

### GOES-16 (Continental US) Example

**Optical Flow (SPROG)** 

CloudCast (CoaT-GRU)

![](_page_19_Picture_3.jpeg)

January 1, 2023 00:00 UTC example case:

- Channel 14 (infrared) movies for optical flow baseline (left) and deep neural network (right)
- Optical flow preserves some structure, while CloudCast shows limited performance against smoothing out the predicted fields in longer lead times, a common problem for nongenerative data-driven nowcasting models.

![](_page_19_Picture_7.jpeg)

## Meteosat-10 (Europe) Example

![](_page_20_Figure_1.jpeg)

February 1, 2023 08:00 UTC example case:

- Channel 02 (visible) movies for optical flow baseline (left) and deep neural network (right)
- Optical flow preserves some detailed cloud structure (possibly erroneously), but cannot handle the nightto-day transition and the changing solar angles.

### **Current Progress**

![](_page_21_Figure_1.jpeg)

Using modern MLOps practices, CloudCast is being deployed into our operational environment.

+ GOES-16 (CONUS-East) + GOES-18 (CONUS-West) + Meteosat-10 (Europe-RSS)

![](_page_21_Figure_4.jpeg)

Incorporating as a new input data source for intra-hour solar power forecasts for Vaisala Xweather customers.

+ On-site irradiance & power obs + Multiple NWP models (ECMWF, UKMET, GFS, HRRR, ...)

+ Satellite-based cloud nowcast

See Pascal Storck's presentation in Session 3B (Wednesday) for further details.

![](_page_21_Picture_9.jpeg)

Plan for Meteosat 3<sup>rd</sup> generation upgrade later in 2024 and early 2025.

![](_page_21_Picture_11.jpeg)

Extension to other GEO satellites as needed.

### **Future Improvements**

- Deep learning continues to rapidly evolve with disruptive new ideas coming to the earth sciences every few months (or even weeks!).
- Classes of generative AI models and new training methods are being evaluated by many researchers in both public and private sectors.
- In particular, generative adversarial networks (GANs) and diffusion models have been popular lately, but will they yield another step change in accuracy?
- Vaisala Xweather will continue to monitor, collaborate, and innovate to bring the best technologies for renewable energy forecasting.

Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions

Quentin Paletta <sup>a,b,\*</sup>, Guillaume Arbod <sup>b</sup>, Joan Lasenby <sup>a</sup> <sup>a</sup> Department of Engineering, University of Cambridge, UK <sup>b</sup> Lab CRICEN, Engie, France

GRAPHICAL ABSTRACT

![](_page_22_Figure_8.jpeg)

#### **Conditioning Diffusion Models**

Goal: guide generation toward a particular data distribution, by estimating

- an image given a class label or text embedding  $p\left( \mathbf{x}\,|\,\mathbf{y}
  ight)$
- the next image given the previous image  $p(\mathbf{x}_t | \mathbf{x}_{t-1}) \leftarrow$  this work

**Soln**: update our model to input the noisy state  $\hat{\mathbf{x}}_t = \mathbf{x} + \mathbf{n}$  and the previous  $\mathbf{x}_{t-1}$ 

 $\mathbb{E}_{\sigma, \mathbf{x}_{(t-1,t)}, \mathbf{n}} \left[ \lambda(\sigma) \| D(\hat{\mathbf{x}}_{t}, \mathbf{x}_{t-1}; \sigma) - \mathbf{x}_{t} \|_{2}^{2} \right]$ 

![](_page_22_Picture_15.jpeg)

Reverse diffusion with the input condition, individual sampling steps ( $t_0 \rightarrow t_{64}$ ), the next time step estimate, and target output

![](_page_22_Picture_17.jpeg)

![](_page_23_Picture_0.jpeg)

The truth about renewable energy forecasting. Part two: "The Bad."

https://www.xweather.com/blog/article/truth-about-renewable-energy-forecasting-part-2