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Solar Power Forecast Limitations
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Baseline: A forecast that considers local observations and NWP only is not very skillful

Utility-Scale
Solar PV project

in SE USA



Spatial Awareness Could Be Helpful

• NWP-resolved cloudiness reduces the solar power forecast partially, but not enough.
• Past observations (clear-sky adjusted) help in this case, but for the wrong reasons.
• No direct satellite ingredient included in this forecast, but clearly one is needed!

Utility-Scale
Solar PV project

in NW USA



Satellite-Based 
Cloud 
Nowcasting

AMS Glossary of Meteorology Definitions:

Nowcast = 0-3 hours

Very short-range forecast = 0-6 hours



Cloud Mask Extrapolation

• Create a binary cloud mask; segment satellite image into 
cloudy and non-cloudy pixels.

• Assign or compute cloud-motion vectors (CMV) from 
successive satellite images, atmospheric motion vector 
retrievals, or NWP model estimates.

• Advect the binary cloud mask forward in time using the 
CMVs as a forecast.

• This kind of technique is the basis for EUMETSAT’s 
“kinematic extrapolation” product known as EXIM.



Optical Flow
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• A method for identifying the pattern of apparent 
motion of objects and edges with a series of subsequent 
images.

• Gradient-based estimation of cloud motion vectors 
(CMV) computed from consecutive images (e.g., Lucas-
Kanade, Gunnar-Farneback, or Horn-Schunck methods).

• The resulting CMV field is used to warp the latest image, 
resulting in a forecast image.

• Can only predict the movement of features found in 
current image, not longer-term evolutions.

• Physical processes such as orographic lift, convergence, 
frontogenesis, and convective initiation are not well 
captured.

From Guo et al. (2023) IET Computer Vision



NCAR Sun4Cast System
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• Sun4Cast leverages several observation-based 
nowcasting technologies, each with its own “sweet 
spot”.

• Includes CIRACast and MADCast components, which 
take different approaches to satellite-based cloud 
advection.

• These technologies are blended via the Nowcasting 
Expert System Integrator (NESI).

• Improvement over smart persistence varies by 
month/year, lead time and sky condition.

• Over lead times <6h, improvement ranged from 36-56% 
in all-sky conditions for each component.

• Satellite-based optical flow was not a comparison 
baseline in this study.

From Figure 5, Haupt et al. (2018) BAMS



Deep Neural Nets with Satellite Data
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• Over the last 5+ years, a number of studies have tested deep learning on satellite imagery for the purpose of 
better solar energy forecasting.

• Common deep learning model architectures, such as convolutional neural networks (CNNs) and encoder-decoders 
(U-Nets) were applied to this problem first.

Cloud Cover Nowcasting with Deep Learning
(Berthomier et al. 2020) [Meteo France AI Lab]

• EUMETSAT Met-11 cloud cover analysis

• All selected models improved over persistence

• U-net surpassed AROME, EXIM models

DeePSat: A Deep Learning Model for Prediction of 
Satellite Images for Nowcasting Purposes  (Ionescu et 
al. 2021) [Romania]

• EUMETSAT Met-11, 5 channels

• Improved over a baseline CNN, but not as much as 
recurrent approaches



Deep Neural Nets with Satellite Data (cont.)
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• Later approaches tested model architectures which combine encoders with recurrent units to capture the spatial 
covariances and time series evolution together.

• Motivation increased because these techniques were shown to significantly outperform both optical flow and 
state-of-the-art NWP in precipitation nowcasting.

• SunCast: Solar Irradiance Nowcasting from 
Geosynchronous Satellite Data (Kumareson et al. 
2022) [UC Berkeley]:
• GOES-16 downward solar radiation (DSR)

• ConvLSTM outperformed HRRR model by 13% in RMSE 
(daytime 10-15:00) for 4-week test

Cloud Nowcasting with Structure-Preserving 
Convolutional Gated Recurrent Units (Kellerhals et al. 
2022) [U. Amsterdam]

• ConvGRU w/ structure preserving loss function

• Beats optical flow MAE by 9-12% at 1-3h leads; in turn, 
optical flow beats persistence by 11-17%



Xweather
CloudCast

Vaisala’s specialist deep neural network (DNN) for 
satellite-based cloud nowcasting



Our Approach

Multi-Modality:
• Use multiple channel satellite data as inputs and targets.
• Utilizing both visible and infrared radiances benefits the other and 

assists with the night-to-daytime transition.

Image-to-Image Sequences:
• Use a stack of recent images to predict the next few images.
• Retain the native projection and resolution of the source images.  No 

re-mapping or interpolation at this stage.

Timing Requirements:
• Rapid updates created every 5 min. Use limited-area scan windows.  

Target 4-5 min as the maximum inference time.
• Create forecasts for the next 3 hours to cover the needs of intra-hour 

solar power nowcasting with a buffer for failover.

Training data (in the 
native projection of 
GOES-16 satellite)

DNN’s input tile

(mega-tile 
context region)

DNN’s target tile



Training Data (GOES-16 Example)
• Primary: GOES-16 CONUS window (5-min)

• Channel 02 (visible, 0.64 um)
• Channel 07 (near-infrared, 3.9 um)
• Channel 14 (infrared, 11.2 um)
• Level-2 ACMC (binary cloud mask)

• Auxiliary:
• Elevation (90-m; NASA SRTM)
• Solar zenith and azimuth angles
• Forecast lead time (5, 10, …, 180 minutes)



First Attempts

Candidate model architecture evaluation:
• Encoder-ConvLSTM-Attention (similar to Google’s MetNet)

• A leading option from recent precipitation nowcasting advancements, with 
performance superior to persistence and NOAA’s 3-km HRRR

• Modified to reduce the number of trainable parameters

• Each target tile only produced a smooth field near the mean value
• Scene background seemed to confuse the algorithm further

• CoaT-GRU (similar to U. Amsterdam ConvGRU)
• Co-Scale Conv-Attentional Image Transformer (CoaT) is an efficient image 

transformer that performs well in classification tasks
• Gated recurrent units (GRUs) are well suited for sequence-to-sequence 

prediction tasks and have a smaller number of trainable parameters compared 
to LSTMs

• “Off-the-shelf”, quick implementation, faster inference time

• Early performance results immediately showed more realism

Encoder-ConvLSTM-Attention

CoaT-GRU



Chosen Model Architecture
• An input data sequence is processed 

(normalized GOES image modalities).

• The conditional time and the pre-processed 
data sequence is condensed from 3D to 2D 
with a ConvGRU layer.

• 2D tensors are processed through a CoAT
spatial encoder-decoder module compressing 
by a factor of 4.

• The conditional time and the CoAT outputs are 
passed through a number of ConvGRU cells for 
temporal refinement.

• A set of regression heads expand the 
predictions into the desired output layers 
(predicted GOES image modalities).

(ConvGRU)

(CoAT)

(ConvGRUCell)

(3D  2D)

(1/4 x)

(4D  4D normalized)

CoaT-GRU



Baseline Comparison Methods
• The extra effort and computational costs 

to train and deploy a deep neural 
network model should be justified by 
significantly out-performing baselines.

• Benchmarks Considered:  
• (weak) Persistence:  nothing changes

• (moderate) Lagrangian persistence:  the 
background flow is estimated at T=0 and it 
is held constant (no evolution)

• (strong) Optical flow:  the motion field is 
estimated at T=0 and its evolution is 
modeled

• From computer vision: Recurrent All-
Pairs Field Transforms (RAFT)

• From radar/precipitation forecasting: 
Spectral Prognosis (S-PROG)

Recurrent All-Pairs Field Transforms (RAFT; Teed and Deng 2020)

Spectral Prognosis (S-PROG; Seed 2003, Pulkkinen et al. 2019)



Evolution of Results – Infrared C14

mega-tile context region 
enlarged

removed Near-IR C04 
features

first attempt

shorter lead times 
weighted more

increased training 
iterations



Final Model Results – CONUS Wide

Infrared – C14 Visible – C02

• Validation for 0-3 h CloudCast predictions of GOES-16 (East) satellite images over whole CONUS area for infrared radiance 
(channel 14) shown at left and visible radiance (channel 2) at right.

• 24% and 50% improvement in MAE at 30 min lead time compared to best optical flow baseline method.
• Smaller percentage improvements at shorter lead times and larger skill at longer lead times.

24%
50%



Final Model Results – By Climate Region

Solar Forecast Arbiter Climate Zones
https://forecastarbiter.epri.com/climatezones/

• For infrared radiance (channel 14) predictions at 30 min ahead, we 
see a 41% improvement over optical flow in the SW USA (climate 
region 3) and 20%-30% elsewhere.



Final Model Results – By Region & Lead Time



GOES-16 (Continental US) Example

Optical Flow (SPROG) CloudCast (CoaT-GRU)

January 1, 2023 00:00 UTC example case:
• Channel 14 (infrared) movies for optical flow baseline (left) and deep neural network (right)
• Optical flow preserves some structure, while CloudCast shows limited performance against smoothing out 

the predicted fields in longer lead times, a common problem for nongenerative data-driven nowcasting 
models.



Meteosat-10 (Europe) Example

February 1, 2023 08:00 UTC example case:
• Channel 02 (visible) movies for optical flow baseline (left) and deep neural network (right)
• Optical flow preserves some detailed cloud structure (possibly erroneously), but cannot handle the night-

to-day transition and the changing solar angles.

Optical Flow (SPROG) CloudCast (CoaT-GRU)



Current Progress

Using modern MLOps
practices, CloudCast is being 
deployed into our 
operational environment.

+ GOES-16 (CONUS-East)
+ GOES-18 (CONUS-West)
+ Meteosat-10 (Europe-RSS)

Incorporating as a new input 
data source for intra-hour 
solar power forecasts for 
Vaisala Xweather customers.

+ On-site irradiance & power obs
+ Multiple NWP models (ECMWF, 
UKMET, GFS, HRRR, …)
+ Satellite-based cloud nowcast 

See Pascal Storck’s presentation 
in Session 3B (Wednesday) for 

further details.

Plan for Meteosat 3rd

generation upgrade later in 
2024 and early 2025.

Extension to other GEO 
satellites as needed.
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Future Improvements

• Deep learning continues to rapidly evolve with disruptive new ideas 
coming to the earth sciences every few months (or even weeks!).

• Classes of generative AI models and new training methods are being 
evaluated by many researchers in both public and private sectors.

• In particular, generative adversarial networks (GANs) and diffusion 
models have been popular lately, but will they yield another step 
change in accuracy?

• Vaisala Xweather will continue to monitor, collaborate, and innovate 
to bring the best technologies for renewable energy forecasting.
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The truth about renewable energy forecasting. Part two: "The Bad."

https://www.xweather.com/blog/article/truth-about-renewable-energy-forecasting-part-2

https://www.xweather.com/blog/article/truth-about-renewable-energy-forecasting-part-2

	Cloud Nowcasting Using Deep Neural Nets
	Solar Power Forecast Limitations
	Spatial Awareness Could Be Helpful
	Satellite-Based Cloud Nowcasting
	Cloud Mask Extrapolation
	Optical Flow
	NCAR Sun4Cast System
	Deep Neural Nets with Satellite Data
	Deep Neural Nets with Satellite Data (cont.)
	Xweather�CloudCast
	Our Approach
	Training Data (GOES-16 Example)
	First Attempts
	Chosen Model Architecture
	Baseline Comparison Methods
	Evolution of Results – Infrared C14
	Final Model Results – CONUS Wide
	Final Model Results – By Climate Region
	Final Model Results – By Region & Lead Time
	GOES-16 (Continental US) Example
	Meteosat-10 (Europe) Example
	Current Progress
	Future Improvements
	Slide Number 24

