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Solar Power Forecast Limitations
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Baseline: A forecast that considers local observations and NWP only is not very skillful
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Spatial Awareness Could Be Helpful
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« NWP-resolved cloudiness reduces the solar power forecast partially, but not enough.
* Past observations (clear-sky adjusted) help in this case, but for the wrong reasons.
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No direct satellite ingredient included in this forecast, but clearly one is needed!
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Cloud Mask Extrapolation

* Create a binary cloud mask; segment satellite image into
cloudy and non-cloudy pixels.

e Assign or compute cloud-motion vectors (CMV) from
successive satellite images, atmospheric motion vector
retrievals, or NWP model estimates.

e Advect the binary cloud mask forward in time using the
CMVs as a forecast.

e This kind of technique is the basis for EUMETSAT’s
“kinematic extrapolation” product known as EXIM.
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Optical Flow

* A method for identifying the pattern of apparent
motion of objects and edges with a series of subsequent
images.

* Gradient-based estimation of cloud motion vectors
(CMV) computed from consecutive images (e.g., Lucas-
Kanade, Gunnar-Farneback, or Horn-Schunck methods).

e The resulting CMV field is used to warp the latest image,
resulting in a forecast image.

e Can only predict the movement of features found in
current image, not longer-term evolutions.

* Physical processes such as orographic lift, convergence,
frontogenesis, and convective initiation are not well
captured.

FIGURE 2 ‘'The optical flow analysis for satellite images.
From Guo et al. (2023) IET Computer Vision
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NCAR Sun4(Cast System

e Sun4Cast leverages several observation-based
nowcasting technologies, each with its own “sweet

spot”. :
* Includes CIRACast and MADCast components, which 20
take different approaches to satellite-based cloud L
advection. ™
50

* These technologies are blended via the Nowcasting
Expert System Integrator (NESI). 0
* Improvement over smart persistence varies by -
250
month/year, lead time and sky condition. A
e Over lead times <6h, improvement ranged from 36-56% o
in all-sky conditions for each component. e

e Satellite-based optical flow was not a comparison
baseline in this study.
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Deep Neural Nets with Satellite Data

e Over the last 5+ years, a number of studies have tested deep learning on satellite imagery for the purpose of
better solar energy forecasting.

e Common deep learning model architectures, such as convolutional neural networks (CNNs) and encoder-decoders
(U-Nets) were applied to this problem first.

Cloud Cover Nowcasting with Deep Learning DeePSat: A Deep Learning Model for Prediction of
(Berthomier et al. 2020) [Meteo France Al Lab] Satellite Images for Nowcasting Purposes (lonescu et
* EUMETSAT Met-11 cloud cover analysis al. 2021) [Romania]
« All selected models improved over persistence * EUMETSAT Met-11, 5 channels
e U-net surpassed AROME, EXIM models * |Improved over a baseline CNN, but not as much as
Comparison of the U-Net’s MSE with other meteorological models recurre nt a p p roac h €s
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for each time step of the forecast. The dashed line represent the MSE Satellite products

computed on binarized values.




Deep Neural Nets with Satellite Data (cont.)

e Later approaches tested model architectures which combine encoders with recurrent units to capture the spatial
covariances and time series evolution together.

* Motivation increased because these techniques were shown to significantly outperform both optical flow and
state-of-the-art NWP in precipitation nowcasting.

e SunCast: Solar Irradiance Nowcasting from Cloud Nowcasting with Structure-Preserving
Geosynchronous Satellite Data (Kumareson et al. Convolutional Gated Recurrent Units (Kellerhals et al.

2022) [UC Berkeley]: 2022) [U. Amsterdam]
 GOES-16 downward solar radiation (DSR) .

* ConvLSTM outperformed HRRR model by 13% in RMSE .
(daytime 10-15:00) for 4-week test

ConvGRU w/ structure preserving loss function

Beats optical flow MAE by 9-12% at 1-3h leads; in turn,
optical flow beats persistence by 11-17%

Table 2. Average percentage differences in accuracy metrics of ConvGRU predictions against
A‘ sen the optical flow ensemble baseline, grouped by lead time (7).
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Grouping HRRR RMSE  Model RMSE Model %AR? %AMAE %ASSIM
Overall 124.9 108.6 ‘ o o
Low DSR (0-300) 165.3 135.3 Huber 63 248 a2
Medium DSR (300-600) 170.7 131.7 SSIM 8.1 -0.06 863
ngh DSR (600+) 103.5 98.3 SSIM + MAE 763 -9.27 7.28

8 MSE

MAE

Huber

SSIM

SSIM + MAE

13.43
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Xweather
CloudCast

Vaisala’s specialist deep neural network (DNN) for
satellite-based cloud nowcasting
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Our Approach

Training data (in the
native projection of
GOES-16 satellite)

Multi-Modality:
e Use multiple channel satellite data as inputs and targets.

e Utilizing both visible and infrared radiances benefits the other and
assists with the night-to-daytime transition.

Image-to-Image Sequences:
e Use a stack of recent images to predict the next few images.

e Retain the native projection and resolution of the source images. No
re-mapping or interpolation at this stage.

Timing Requirements:

e Rapid updates created every 5 min. Use limited-area scan windows. DNN’s input tile DNN’s target tile
Target 4-5 min as the maximum inference time.

. (mega-tile
* Create forecasts for the next 3 hours to cover the needs of intra-hour context region)
solar power nowcasting with a buffer for failover.
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Training Data (GOES-16 Example)

e Primary: GOES-16 CONUS window (5-min)
* Channel 02 (visible, 0.64 um)
* Channel 07 (near-infrared, 3.9 um)
* Channel 14 (infrared, 11.2 um)
* Level-2 ACMC (binary cloud mask)

e Auxiliary:

* Elevation (90-m; NASA SRTM)
e Solar zenith and azimuth angles
* Forecast lead time (5, 10, ..., 180 minutes)

o}
20
40
60
30 18

100 19

120

140

160

o o <9
™

VAISALA

NXweather

02

160

20 e

40

60 +

80
100

120 48
140 {8

160

c07

wmunmH E A=

20

40

Train-valid-test split
2022

80 | ....E

100

120 .._
140 8

160

160

20
40

60 ¢

80
100

bcm
Ll

160

20 .

40

60

80
100
120
140

160 B

40

120

140 £

160

100

120 1

140
160

train
valid
test
excluded



First

Attempts

Candidate model architecture evaluation:

* Encoder-ConvLSTM-Attention (similar to Google’s MetNet)

A leading option from recent precipitation nowcasting advancements, with
performance superior to persistence and NOAA’s 3-km HRRR

Modified to reduce the number of trainable parameters
Each target tile only produced a smooth field near the mean value

Scene background seemed to confuse the algorithm further

* CoaT-GRU (similar to U. Amsterdam ConvGRU)
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Co-Scale Conv-Attentional Image Transformer (CoaT) is an efficient image
transformer that performs well in classification tasks

Gated recurrent units (GRUs) are well suited for sequence-to-sequence
prediction tasks and have a smaller number of trainable parameters compared
to LSTMs

“Off-the-shelf”, quick implementation, faster inference time

Early performance results immediately showed more realism

Encoder-ConvLSTM-Attention

T=>5min




Chosen Model Architecture

GOES

CoaT-GRU

(4D - 4D normalized)

GOES

=== Data preprocessing ——J»| Temporal encoding (3D > 2D)
—»| (ConvGRU)

T=5

GOES

Conditional time
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(1/4 x)

Spatial encoding
(CoAT) — Head #1

v

Output

3= Temporal finetuning I Head #2
(ConvGRUCEell)

Output

—» Head #N

Output

An input data sequence is processed
(normalized GOES image modalities).

The conditional time and the pre-processed
data sequence is condensed from 3D to 2D
with a ConvGRU layer.

2D tensors are processed through a CoAT
spatial encoder-decoder module compressing
by a factor of 4.

The conditional time and the CoAT outputs are
passed through a number of ConvGRU cells for
temporal refinement.

A set of regression heads expand the
predictions into the desired output layers
(predicted GOES image modalities).




Baseline Comparison Methods

* The extra effort and computational costs

to train and deploy a deep neural
Recurrent All-Pairs Field Transforms (RAFT; Teed and Deng 2020) network model should be justified by

significantly out-performing baselines.

TR

« Benchmarks Considered:

» (weak) Persistence: nothing changes

| . * (moderate) Lagrangian persistence: the
Opeical Pl background flow is estimated at T=0 and it
is held constant (no evolution)

Conlext Encoder

(strong) Optical flow: the motion field is
Spectral Prognosis (S-PROG; Seed 2003, Pulkkinen et al. 2019) estimated at T=0 and its evolution is

(a) Observed 01-01-2019 T06:05UTC (b) Forecast +5 min (c) Forecast +60 min ) (d) Forecast +120 min ) mOdEIEd

* From computer vision: Recurrent All-
Pairs Field Transforms (RAFT)

From radar/precipitation forecasting:
Spectral Prognosis (S-PROG)

,,,,,,,,,,
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Evolution of Results — Infrared C14

Loss Over Lead Time

(crit = L1_LOSS, product = C14, samples=3600)

Loss Over Lead Time
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Final Model Results — CONUS Wide

Loss Over Lead Time Loss Over Lead Time
(crit = L1 LOSS, product = Cl4, samples/leadtime = 4785) (crit = L1 LOSS, product = C02, samples/leadtime = 4683)
—— SPROG 8.95 - model
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* Validation for 0-3 h CloudCast predictions of GOES-16 (East) satellite images over whole CONUS area for infrared radiance
(channel 14) shown at left and visible radiance (channel 2) at right.
*  24% and 50% improvement in MAE at 30 min lead time compared to best optical flow baseline method.

* Smaller percentage improvements at shorter lead times and larger skill at longer lead times.
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Final Model Results — By Climate Region

50

-120 -110 -100 -90 -80 -70

30 4

Solar Forecast Arbiter Climate Zones
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Prediction quality heatmap, T+30min
cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-step=20000
(crit = L1_LOSS, product = C14, col = skill_score) 0.4
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* Forinfrared radiance (channel 14) predictions at 30 min ahead, we
see a 41% improvement over optical flow in the SW USA (climate
region 3) and 20%-30% elsewhere.



Final Model Results — By Region & Lead Time

Skill Score Over Lead Time Skill Score Over Lead Time Skill Score Over Lead Time Skill Score Over Lead Time
cloud-tracking-v2.26.0.post1.dev1689749125- epoch=14-step=20000 vs. SPROG  cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-step=20000 vs. SPROG cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-step=20000 vs. SPROG cloud-tracking-v2.26.0.post1l.dev1689749125-epoch=14-step=20000 vs. SPROG
(crit = L1_LOSS, product = C14, REGION 2, samples/leadtime = 310) (crit = L1_LOSS, product = C14, REGION 4, samples/leadtime = 417) (crit = L1 _LOSS, product = C1l4, REGION 5, samples/leadtime = 759) (crit = L1_LOSS, product = C14, REGION 7, samples/leadtime = 172)
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
g g g g
2 e 2 6.0 2 60 2 e
@ @ @ @
0.2 0.2 0.2 0.2
0.4 0.4 0.4 0.4
@ 10 20 30 4 50 60 70 8 90 100 110 120 130 140 150 160 170 180 @ 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 @ 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 @ 10 20 30 40 50 60 70 8 90 100 110 120 130 140 150 160 170 180
Lead Time (minutes) Lead Time (minutes) Lead Time (minutes) Lead Time (minutes)
Skill Score Over Lead Time Skill Score Over Lead Time Skill Score Over Lead Time Skill Score Over Lead Time
cloud-tracking-v2.26.0.post1.dev1689749125-epoch=14-step=20000 vs. SPROG cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-step=20000 vs. SPROG cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-5tep=20000 vs. SPROG cloud-tracking-v2.26.0.postl.dev1689749125-epoch=14-step=20000 vs. SPROG
(crit = L1_LOSS, product = C14, REGION 1, samples/leadtime = 41) (crit = L1_LOSS, product = C14, REGION 3, samples/leadtime = 355) (crit = L1 _LOSS, product = C1l4, REGION 6, samples/leadtime = 492) (crit = L1_LOSS, product = C14, REGION 8, samples/leadtime = 187)
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
2 e 2 6.0 2 e 2 e
@ @ E @
0.2 0.2 0.2 0.2
0.4 0.4 0.4 0.4
1 20 30 40 S0 60 70 89 90 100 110 120 130 140 150 160 170 180 1 20 30 49 S0 60 70 80 9 100 110 120 130 140 150 160 170 180 10 20 30 4 50 60 70 89 9 100 110 120 130 149 150 160 170 180 1 20 30 40 S0 60 70 89 9 100 110 120 130 140 150 160 170 180
Lead Time (minutes) Lead Time (minutes) Lead Time (minutes) Lead Time (minutes)

VAISA

L5(weather



GOES-16 (Continental US) Example

Optical Flow (SPROG) CloudCast (CoaT-GRU)

January 1, 2023 00:00 UTC example case:

* Channel 14 (infrared) movies for optical flow baseline (left) and deep neural network (right)

* Optical flow preserves some structure, while CloudCast shows limited performance against smoothing out

the predicted fields in longer lead times, a common problem for nongenerative data-driven nowcasting
models.
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Meteosat-10 (Europe) Example

Optical Flow (SPROG) CloudCast (CoaT-GRU)

2023-02-01 08:00 T = 15 min 2023-02-01 08:00 T = 15 min

February 1, 2023 08:00 UTC example case:
* Channel 02 (visible) movies for optical flow baseline (left) and deep neural network (right)

* Optical flow preserves some detailed cloud structure (possibly erroneously), but cannot handle the night-
to-day transition and the changing solar angles.
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Current Progress

Using modern MLOps
practices, CloudCast is being
deployed into our
operational environment.

+ GOES-16 (CONUS-East)
+ GOES-18 (CONUS-West)
+ Meteosat-10 (Europe-RSS)
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Incorporating as a new input
data source for intra-hour
solar power forecasts for
Vaisala Xweather customers.

+ On-site irradiance & power obs

+ Multiple NWP models (ECMWEF,
UKMET, GFS, HRRR, ...)

+ Satellite-based cloud nowcast
See Pascal Storck’s presentation

in Session 3B (Wednesday) for
further details.

Plan for Meteosat 3™
generation upgrade later in
2024 and early 2025.

Extension to other GEO
satellites as needed.
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Future Improvements

e Deep learning continues to rapidly evolve with disruptive new ideas
coming to the earth sciences every few months (or even weeks!).

e Classes of generative Al models and new training methods are being
evaluated by many researchers in both public and private sectors.

* In particular, generative adversarial networks (GANs) and diffusion
models have been popular lately, but will they yield another step
change in accuracy?

* Vaisala Xweather will continue to monitor, collaborate, and innovate
to bring the best technologies for renewable energy forecasting.
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Omnivision forecasting: Combining satellite and sky images for improved
deterministic and probabilistic intra-hour solar energy predictions

Quentin Paletta ", Guillaume Arbod ", Joan Lasenby *

“ Department of Engineering, University of Cambridge, UK
" Lab CRIGEN, Engie, France

GRAPHICAL ABSTRACT
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Conditioning Diffusion Models

Goal: guide generation toward a particular data distribution, by estimating
- an image given a class label or text embedding p (x | y)

- the next image given the previous image p (x, | "1_1) <« this work

Soln: update our model to input the noisy state X, = X + n and the previous Xx,_;

|40 IDG, x,_130) = x,|I3]
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The truth about renewable energy forecasting. Part two: "The Bad."
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https://www.xweather.com/blog/article/truth-about-renewable-energy-forecasting-part-2
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