

Grid Forming Inverters Fundamentals and Stability Services Specifications

Frank Berring | Head of Business Development

March, 2024

Agenda

Grid Forming Inverter Fundamentals

Grid Forming Inverter Specifications

Grid Forming Inverters - *a contrast between essential and advanced capabilities*

Agenda

Grid Forming Inverter Fundamentals

3

Grid Forming Inverter Specifications

Grid Forming Inverters - a contrast between essential and advanced capabilities

Grid Following vs. Grid Forming

> 0%	20%····30% INVERTER PENETR	ATION 60%…70%	100%
Grid Following	Grid Supportion	ng School Gri	id Forming FUTURE
→Maximum energy yield active power	Grid-friendly act reactive power	ive & →Enable 2 penetra	100% renewable tion
Source the source behavior \rightarrow P priority over Q	or →Current source b →Stabilizing with P →Q over P in some	ehavior &Q cases (in harm sources)	source behavior dent U&f provision ony with other
Grid Following = Current	Controlled Source	Grid Forming = Vo	oltage Controlled

Source

GFL vs. GFM comparison

Grid Following (GFL)

- PLL control is used to generate the output signal of the inverter
- Control the active and reactive power

Grid Forming (GFM)

- PLL is only used for measurements in the grid, but no for control
- Control the voltage magnitude and phase/frequency

SUNNY CENTRAL STORAGE (SCS) UTILITY POWER (UP) CONVERTERS

Summary: Droop vs. Inertia

What is Synchronous Grid Forming

- Inverters operating in Voltage Source
 Control Mode Grid Forming
- In synchronism with a large interconnected network
- Stabilizing weak grid regions and the overall power system
- Compatible with existing systems, and enabling 100% inverter-based generation.

Synchronous Grid Forming is the key enabler for 100% renewable generation.

Overview: What Does Grid Forming Unlock?

Agenda

Grid Forming Inverter Fundamentals

Grid Forming Inverter Specifications

Grid Forming Inverters - *a contrast between essential and advanced capabilities*

Grid Forming – The Essential ISO Specification Should…

1.LLSM = Loss of Last Synchronous Machine ... inverter seamlessly operates as an islanded system when the grid is disconnected

Grid Forming – The Essential ISO Specification Should…

1.LLSM = Loss of Last Synchronous Machine ... inverter seamlessly operates as an islanded system when the grid is disconnected

Agenda

Grid Forming Inverter Fundamentals

Grid Forming Inverter Specifications

Grid Forming Inverters - *a contrast between essential and advanced capabilities*

"Basic" vs "Advanced" Grid Forming Asset Designs - A Closer Look at Stability Services

	_			
Generator Behavior Benefits of Grid Forming IBRs	 Instantaneous response to grid events due to physics of voltage phasor control Adjustable power response for adaption to changing 	Ride-through of extreme grid events overcoming physical limits of electric machines Reduced risk for asynchronous tripping with advanced synchronization controls		
market conditions				
	"Basic" Plant Design w/out Headroom	"Advanced" Plant Designed for Stability Services		
System Strength (SCR) Improvement	Improved voltage stability due to fundamental phasor control methodology			
RoCoF / Inertia	Amount of inertia is limited by the state of the plant operation in the moment of need	Predictable, tunable inertia available at all times		
Short Circuit Current	Inherent, instantaneous fault current response, but limited to nameplate current	Current boost for firm response > 1pu even when plant is operating at		
		nominal power		

2023+ Multi-Use of Battery Energy Storage Solution

Designing for Stability Services Inertia and SCL

Flexibility within rated power Inertia will reduce base case Inertia on top of rated power Maximize response and revenues Requires oversizing (**e.g.** +**10%**) and boost

SCS **current boost** profiles for covering typical applications

^{1.} Valid for Sunny Central Storage UP and XT inverters (SCS 3450...3950 UP & XT)

SMA

CONCLUSION: Grid Services based on different asset classes:

Battery Storage as the multi-purpose tool for future

nnmar evetame Synchronous BESS BESS Grid Following Condenser Advanced Grid Forming PRIMARY/SECONDARY FREQUENCY Yes Yes RESERVE STORAGE FOR SYSTEM BALANCING Yes Yes (ARBITRAGE) CONGESTION MANAGEMENT (GRID Yes Yes BOOSTER) REACTIVE POWER (STATCOM) Design spec Design spec Design spec INFRTIA Design spec Design spec FAULT CURRENT / SYSTEM STRENGTH Design spec Design spec BLACKSTART / ISLAND CAPABILITY Yes

SMA Solar Technology

Energy **Grid Booster** Congestion Management / Virtual Transmission Line Arbitrage **Stability Services** Frequency 2 Inertia Control Multiple, Short-circuit level stacked revenue System strength Multi-use streams make Grid Asset the business Stability Services case Inertia **Voltage Control** 3 3 Short-circuit level **STATCOM** System strongt' System System Restoration Restoration

Developer IPPs *Market-oriented* use cases System Operators *Grid Asset* use cases

In the US Market, BESS has two distinct Stakeholders

Stability Pathfinder Phase 2 – <u>Technology agnostic</u> <u>tender</u> Commercial Results and Analysis Data Source: NOA Stability

Pathfinder | ESO (nationalgrideso.com)

Out of 225 projects 5 with Syncons and 5 with BESS have been selected! SMA Solar Technology BESS is the most competitive solution!

THANK YOU

SMA America, LLC