ercot

High Penetration of Inverter-Based Generation in ERCOT

Julia Matevosyan Resource Adequacy ERCOT Transmission Planning

ESIG Spring Workshop March 20, 2019

The ERCOT Region

The interconnected electrical system serving most of Texas, with limited external connections

- 90% of Texas electric load; 75% of Texas land
- 73,473 MW peak, July 19, 2018
- More than 46,500 miles of transmission lines
- 600+ generation units

ERCOT connections to other grids are limited to ~1,250 MW of direct current (DC) ties, which allow control over flow of electricity

ERCOT Renewable Generation Overview

Recent Generation Retirements

Year	Recent Synch. Generation Retirements, MW
2016	534
2017	1,191
2018	4,273
2019	280

Existing Challenges with High Penetration of IBRs

- Declining inertia, critical inertia
- Undesired voltage performance under to low system strength
- Expansion of existing weak grid areas and
- New weak grid areas being identified
- Model Adequacy

Critical Inertia and Inertia Monitoring

Weak Grid Issues

Texas Panhandle:

- IBRs ~ 5.5 GW planned, ~4 GW in service
- No local load or synchronous generators
- Voltage support and system strength issues managed through export constraints
- New IBRs are being built just outside of the constrained area – weak grid area is expanding

Other areas in ERCOT may start experiencing similar issues as well.

Real -Time Transmission Limit due to Voltage Stability and Weighted Short Circuit Ratio Considerations

Modeling and PSCAD Studies

- IBRs connecting to ERCOT are now required to provide PSCAD models.
- ERCOT has conducted number of PSCAD studies for Panhandle and South Texas.
- Going forward PSCAD studies are expected to be performed more frequently due to the evolving grid and increasing IBRs share.
- PSCAD studies are computationally intensive. For example, Panhandle PSCAD study (400 busses), requires 40 threads and ~2 hours to simulate one contingency.

ERCOT High Penetration Study

- ~70% Penetration of Inverter-Based Wind and Solar Resources
- Less Synchronous Generators
- Reduced System Strength

http://www.ercot.com/content/wcm/lists/144927/Dynamic_Stability_ Assessment_of_High_Penertration_of_Renewable_Generatio....pdf

Load: 42.2 GW (includes PUNs)
Solar output: 17 GW (90% dispatch)
Wind output: 11 GW (48% dispatch)

West Texas Exports: 15.5 GW (major 345 kV circuits)

Losses (MW): 6%

Ongoing Initiatives

In ERCOT:

- Stakeholder Workshop to review NERC Reliability Guideline (BPS-Connected IBR Performance) Recommendations and identify changes needed to ERCOT's interconnection requirements for IBRs.
- Continue Panhandle and South Texas PSCAD studies

Industrial Involvement:

- Coordinating and contributing to IEEE PES Power and Energy Magazine, Nov/Dec issue's article "Could Grid Forming be a Silver Bullet for High Inverter-Based Penetration?"
- PS173A: System Planning Methods, Tools, and Analytics
- A number of CIGRE WG on impacts from high share of IBRs
- ESIG High Share of Inverter-Based Generation Task Force under Reliability Working Group

Key Takeaways

- How to better identify and manage stability constraints in the real time operations?
- How to perform reliability assessment for a system with high penetration of inverter-based generation?
 - Model, Tool adequacy?
- Is synchronous condensers a viable long term option for system strength?
- Can IBR be more robust and provide more reliability support? (voltage, frequency, short circuit current, weak grid, damping, ...etc.)
- In addition to 100% IBR, a roadmap to 100% IBR is equally or more important to system operators.
 - Operation, Planning, Market, Protection, ...etc.

