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s~ Defining and Monetizing the Value of Energy
e Storage and Distributed Energy Resources (DERS)
Northwest  More Broadly o

nergy Storage Values
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Key takeaways:

= We have developed a broad taxonomy and modeling approach for defining the value of DERs
= Economic value is highly dependent on siting and scaling of energy storage resources; many benefits accrue directly to customers
= Benefits differ based on utility structure (e.qg., public utility districts (PUDSs), co-ops, vertically integrated utilities) and market operation

= Accurate characterization of Battery Energy Storage System (BESS) performance, and development of real-time control strategies,
are essential to maximizing value to the electrical grid
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Traditional Hydro: from steady or predictable patterns Pumped Storage: from day/night arbitrage to fast

to fast and frequent ramping response
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PSH in the U.S.
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ERCOT: Electric Reliability Council of Texas NPCC: Northeast Power Coordinating Council SPP: Southwest Power Pool

FRCC: Florida Reliability Coordinating Council RFC: ReliabilityFirst Corporation WECC: Western Electricity Coordinating Council
MRO: Midwest Reliability Organization SERC: SERC Reliability Corporation

Notes: The Alaska Systems Coordinating Council (ASCC) is an Affiliate NERC member. Commercial electric power providers in Hawaii are not affiliated with NERC.
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Note: This figure displays the initial year of operation for each project except in two cases (Hiwassee and Grand
Coulee) in which no pumped storage units were installed when they first became operational. In those two
cases, the capacity was assigned to the decade in which the pumped storage units were added.

Figure 18. Pumped storage hydropower installation timeline by plant size

About 22 GW of PSH capacity deployed in

the US, but no new large projects in the last

20 years
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= Given the rapid changes occurring in the U.S. electric system—and associated
challenges and opportunities—the Water Power Technologies Office (WPTO)
has launched a new hydropower-grid research initiative titled HydroWIRES:
Water Innovation for a Resilient Electricity System.

* The mission of HydroWIRES s to understand, enable, and improve
hydropower’s contributions to reliability, resilience, and integration in a rapidly

evolving electricity system.
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https://energy.qov/HydroWIRES
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HydroWIRES Program Areas
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Value under Evolving System Conditions Capabilities and Constraints

Understand the needs of the rapidly evolving grid Investigate the full range of hydropower’s

and how they create opportunities for hydropower capabilities to provide grid services, as well

and PSH. as the machine, hydrologic, and institutional

“What will the grid need?” constraints to fully utilizing those
capabilities.

Y

What can hydropower do?”

Operations and Planning

Optimize hydropower operations and planning—alongside other resources—to
best utilize hydropower’s capabilities to provide grid services.

“How can hydropower best align what it can do with what the grid will need?”

Technology Innovation

Invest in innovative technologies that improve hydropower capabilities to provide
grid services.

“What new technology could expand what hydropower can do to meet grid needs?”
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Objective: Advance the state of the art in the assessment of value of PSH plants and
their role and contributions to the power system

Specific goals:

1. Develop a comprehensive and transparent valuation guidance that will allow for consistent valuation
assessments and comparisons of PSH projects

2. Test the PSH valuation methodology by applying it to two selected PSH projects
3. Transfer and disseminate the PSH valuation guidance to the hydropower industry, PSH developers, and

other stakeholders
I, - Baar€r PSH
! raft P ‘Mountain Valuation
Valuation AR AN Revise and Guidance

DEVELED Pl ' Guidance Test Valuation / | Publish

Valuation

Methodology Methodology _ Valuation

::.,|ET.'£-'F-'-" | . : Methodology
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| . e
u BUlk power CapaC|ty and energy Value over PSH +1_ Provide Project Overview and Technology Description
Ilfetlme +2_ Define Valuation Question and Document Valuation Context

+3_ ldentify the Set of Alternatives
4 Determine Relevant Stakeholders and Define Boundaries

= Value of PSH ancillary services (regulation service,

Contingency reserves, etc_) _
+5. Catallog Impacts and Metrics . _
= Power system stability services (inertial response, "0 Identify Key Impacts and Metrics for Valuation
governor response, transient and small signal — _ | -
stability, voltage support) B o ot o 5 s
. . . *9. Develop As ti d Input Dat
= PSH impacts on reducing system cycling and SYEPP eI S TP R
- R Detormine and Evaluate Resuls
ramplng COStS +10.Assess Impacts for each Alternative
= Other indirect (system-wide or portfolio) effects of 112 Gonduct Cost Benefit Analysis for sach Atemative
PSH Operat|0ns (e_g_’ PSH |mpacts on decreas|ng +13. Perform Multi-Criteria Decision Analysis

+14 Compare Values, Document Analysis, and Report Findings

overall power system production costs, benefits for

integration of variable energy resources, and
impacts on emissions)

» PSH transmission benefits (transmission congestion relief, transmission investments deferral)

* PSH non-energy services (water management services, socioeconomic benefits, and environmental
impacts)

Cost-Benefitand Decision Analysis Framework
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Key takeaways:

=  We thought a tool would be more effective than a document to users when conducting project assessments
» Thetwo basic structures we propose are a decision-tree-based model and a comprehensive tool

= When building a tool, decisions aboutits basic structure are dictated by user, budget, and technical feasibility considerations

= Qur preliminary approach is to design a decision-tree-based model with an embedded price-taker model and an off-ramp for
guiding the user when using a price-maker model.
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Objectives: To define and compare energy storage technology costs and to
evaluate these technologies across a variety of performance parameters

» Cost and performance characteristics are presented for the following energy
storage technologies:

— Lithium-ion batteries — Zinc-hybrid cathode batteries

— Lead-acid batteries — Pumped storage hydropower

— Redox flow batteries — Flywheels

— Sodium-sulfur batteries — Compressed air energy storage
— Sodium metal halide batteries — Ultracapacitors

= Cost information procured for most recent year for which data are available; data
procured from literature and industry survey/contacts/data

» Base year used is 2018 and projections for 2025 were developed.

11
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Parameter

Capital Cost — Energy
Capacity ($/kW)

Power Conversion
System (PCS) ($/kW
Balance of Plant (BOP)
$/kW

Construction and
Commissioning ($/kW

Total Project Cost ($/kW

Total Project Cost ($/kWh)@
O&M Fixed ($/kW-year

O&M Variable (cents/kwWh)

System Round-Trip Efficiency
RTE

Annual RTE Degradation
Factor

Cycles at 80% Depth of
Discharge

Life (Years

MRL

TRL

a) Assumed energy to power ratios - CAES and PSH = 16, ultracapacitor = 0.125, and fl

Storage
Hydropower
1,700-3,200
2,638
Included in
Capital Cost

1,700-3,200
2,638
106-200
165
15.9

0.00025
0.80

Combustion
Turbine

678-1,193
940

N/A

678-1,193
940

13.0
1.05

0.328

Not Relevant

20
10
9

CAES
1,050-2,544
1,669

N/A

1,050-2,544
1,669
94-229
105
16.7

0.21
0.52

Flywheel
600-2,400
2,400

Included in Capital

Cost

480

1,080-2,880
2,880
4,320-11,520
11,520
5.6

0.03
0.86

0.14%

200,000
>20

Ultracapacitor
240-400
400

350 (255)
100 (95)
80
930 (835)

74,480 (66,640)

1
0.03

0.92

0.14%

1 million

16
9
8

12
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Pumped

Storage Combustion

Parameter Hydropower Turbine CAES Flywheel Ultracapacitor
Capital Cost — Energy 1,700-3,200 678-1,193 1,050-2,544 600-2,400 240-400
Capacity ($/kW) 2,638 940 1,669 2,400 400
Power Conversion Included in Included in Capital
System (PCS) ($/kwW Capital Cost N N Cost ’ €0 (@)
Balance of Plant (BO?)
$IkW

C tructi o] .. .
. PSH represents a mature, efficient, and cost-effective

LD - option when measured in terms of $ per kWh of
Total Project Cost ({ykW 2,638 d
106-200 stored energy.

Total Project Cost ({3/kWh)@ 165

100 (95)

11,520

O&M Fixed ($/kW-y 2ar 15.9 16.7 5.6 1
O&M Variable (cents/kWh) 0.00025 0.21 0.03 0.03
System Round-Trip L=fficiency 0.80 d 308 052 0.86 0.92
RTE
Annual RTE Degradation 0.14% 0.14%
Factor

0,
SIS il S0 Dl @ ot Relevant 10,000 200,000 1 million
Discharge
Life (Years 20 25 >20 16
MRL 10 8 (9) 8 (9) 9

TRL 9 7(8 7(8 8

a) Assumed energy to power ratios — CAES and PSH = 16, ultracapacitor = 0.125, and flywheel = .25.

13
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Sodium-Sulfur Batter Li-lon Batter Lead Acid Flow Batter

2018 2025 2018 2025 2018 2025 2018 2025

Parameter
. : 400-1,000 300-675 223-323 156-203 120-291 102-247 435-952 326-643
Capital Cost — Energy Capacity ($/kwWh) ( ) ( ) ( ) ( )
6 (465) 271 (189) 260 (220) 555 (393)

61
230-47 184-32 230-47 184-32 230-47 184-32 230-47 184-32
Power Conversion System (PCS) ($/kW) 30-470 (184-329) 30-470 (184-329) 30-470 (184-329) 30-470 (184-329)
350 (212) 288 (212) 350 (212) 350 (2112)

Balance of Plant (BOP) (SkW) 80-120 (75-115) 80-120 (75-115) 80-120 (75-115) 80-120 (75-115)
100 (95) 100 (95) 100 (95) 100 (95)
_ - 121-145 (115-138) 92-110 (87-105) 160-192 (152-182) 173-207 (164-197)
Construction and Commissioning ($/kWh)
133 (127) 101 (96) 176 (167) 190 (180)

2,394-5,170 (1,919-3,696) 1,570-2,322 (1,231-1,676) 1,430-2,522 (1,275-2,160) 2,742-5,226 (2,219-3,804)

Total Project Cost ($/kW)
3,626 (2,674) 1,876 (1,446) 2,194 (1,854) 3,430 (2,598)

e Pt Cost (S 509-1,293  (480-924) 393-581 (308-419) 358-631 (319-540) 686-1,307  (555-951)
Oola (0][S]e oS
: ( ) 907 (669) 469 (362) 549 (464) 858 (650)

10 ®) 10 ©) 10 (8 10 )
0.03 0.03 0.03 0.03

0.75 0.86 0.72 0.675 0.7)
0.34% 0.50% 5.40% 0.40%

1sec 1sec 1 sec 1 sec

4,000 3,500 900 10,000

135 10 15

/'/

An E/P ratio of 4 hours was used for battery technologies when calculating total costs. Sodium metal halide and zinc-hybrid cathode not included on slide.
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P P
Sodium-Sulfur Batter Li-lon Batter Lead Acid Flow Batter

Parameter 2018 2025 2018 2025 2018 2025 2018 2025

Cap.al Cost — Energy Capacity ($/k\/'/h) 7 435952 (326-643)

555 (393)
Pwer Conversion System (PCS) ($/kW) 230-470 (184-329)
350 (211)
Balance of Plant (BOP) (kW) calculated b_esed on either energy (kWhor power 80-120  (75-115)
= (kW) capacities. We presentrange and point 100 (95)
Co\ 'struction and Commissioning &k Ah)| €Stimates. | 173-201 (164-197)
: 190 (180)
2,394-5,170 (1 , 1,570-2,322 (1,231-1,676) 1,430-2,522 (1,275-2,160) 2,742-5:226 19-3,804)
Total Project Cost ($/kW) szi&\
(2,674) 1,876 (1,446) 2,194 (1,854) 3,430 (2,598)
‘ 99-1,293  (480-924) 393-581 (308-419) 358-631 (319-540) 686-1,307  (555-951)
Total Project Cost ($/kwWh)
(669) 469 (362) 549 (464) 858 (650)
0%M Fixed ($/KW-yr) ) 10 ) 10 (8) 10 /(a.)/
()O&M Variable (cents/kWh) 0.03 0.03 0.03 0.03
System Round-Trip Efficiency (RTE 0.75 0.86 0.72 0.675 (0.7)

Annual RTE Degradation Factor . 0.50% 5.40% 0.40%
k) 1 1 . .
Pessonse Tine (miled by PES) Total costs calculated for illustrative 1 MW / 4

ews ~ Weinclude several MWh BESS. Li-lon has lowest initial capital
performance metrics. | costs today .

Vears)

An £/P ratio of 4 hours w25 used for |
~—
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= Among the battery systems, Li-ion offers the best $700
option today in terms of cost, performance, g s
calendar and cycle life, and technology maturity e

$300

» For longer-term storage, PSH and compressed air o I I | . l
energy storage (CAES) give the lowest cost in 5
$/kWh at $165/kWh and $104/kWh, respectively, & E e &8
inclusive of BOP and C&C costs: PSH is more $ 5 T bﬁ‘t’ ¢ é;}"‘”% @e‘*‘ T @
mature and efficient s = ¢

m Capital Cost BOP mPCS mC&C mO&M 2025 Total $/kW

» Redox flow batteries hold promise and there is
room for improvement with stack optimization and
— better flow battery management algorithms

Annualized $/kWh Cost of All Technologies

$100,000
510,000

$1,000

= Battery energy storage technologies serve a useful
purpose by offering flexibility in terms of targeted -
deployment across the distribution system. " . .

s1

log scale $/kWh-year

it

Lead Acid
Redox Flow
Flywheels
ustion Turbine

Sodium-Sulfur
Lithium-i
Ultracapacitor

‘5.
£
]

Sodium Metal Halide
Zinc Hybrid Cathode

Pumped Storage Hydro
Comb

Electrochemical Mechanical Electrical Non-

W Capital Cost WBOP wPCS = C&C ™WO&M #2025 Total 5/kWh
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= A rapidly evolving grid space is leading to shifts in hydro and PSH operations; hydro and PSH offer
enormous flexibility

= Economic value is highly dependent on siting and scaling of energy storage resources

= Among the battery systems, Li-ion offersthe best option today in terms of cost, performance,
calendar and cycle life, and technology maturity

= For longer-term storage, PSH and CAES give the lowest costin $/kWh at $165/kWhand
$104/kWh, respectively, inclusive of BOP and C&C costs; PSH is more mature and efficient

= Battery energy storage technologies serve a useful purpose by offering flexibility in terms of
targeted deployment across the distribution system

» PSH offers more than 95% of U.S. energy storage capacity but there have been no new large
projects in the last 20 years due to regulatory, economic, and environmental concerns

* The U.S. Department of Energy is working to address some of the key technical challenges to
long-duration storage deployment in the U.S.

17
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