

ESIG SPRING TECHNICAL WORKSHOP 25-MARCH-2024

BENJAMIN JOSEPH BRAUN

Integration of GFM Solutions for Compliance on Plant Level

How are grid-forming projects evolving? How are BESS suppliers responding?

System Strength: Compensate vs. Compel vs. Cost-Out?

nationalgridESO STABILITY PATHFINDER 2

- Identified weak points in grid
- Focused on SC levels
- Defined technology agnostic requirements
- Public tender to incentivise grid strength
 - Fault power (MVA)
 - Upside for Inertia (MVA.s)
 - Allows Parallel Services

	Effective S in MVA o 100ms fo fault at Blackhilla 400kV (fro Test 1 Step	CL at at at at b at at at b at at at at at at at at at at	Effective SCL in MVA at 100ms for a fault at Hunterston 400kV (from Test 1 Step 3).	Effective SCL in MVA at 100ms for a fault at Loangannet 275kV (from Test 1 Step 3).	Effective SCL in MVA at 100ms for a fault at Peterhead 275kV (from Test 1 Step 3).	Effective SCL in MVA at 100ms for a fault at Spittal 275kV (from Test 1 Step 3).	Effective SCL in MVA at 100ms for a fault at Mark Hill/ Coylton 275kV (from Test 1 Step 3).	Effective SCL in MVA at 100ms for a fault at Moffat/Elvanf oot 400kV (from Test 1 Step 3)	Inertia x Inertia availability (MVA.s)
Technology Type	SCL Blackhillo	SCL Eccles	SCL Hunterston	SCL Logannet	SCL Peterhead	SCL Spittal	SCL Mark Hill	SCL Moffatt	Inertia Derated
Cold Forming Batton Stanson	•		74			•	436		
Grid Forming Battery Storage	8	22	74	41	/	0	125	08	0
Grid Forming Battery Storage	19	21	79	56	13	1	25	55	0
Synchronous Condenser	1918	32	70	476	574	13	18	66	549
Grid Forming Battery Storage	84	4	10	49	51	1	2	9	333
Grid Forming Battery Storage	1	44	249	95	1	1	114	211	1341
Grid Forming Battery Storage	5	936	22	41	4	1	4	57	2686

- Identified weak scenarios (EU Grid Split)
- Focused on Inertia Needs
- Defined requirements more flexible for renewables (Asymmetric Inertia)
- Public Consultation to review
- Effectively compels all BESS to be GFM in ~3years
- Triggered Bundesnetzagentur to initiate a "Bonus" scheme which will compensate early adapters!

SYSTEM STRENGTH CHARGE

- Identified weak points in grid
- Focused on SC ratios
- Defined technology agnostic evaluation tests
- Charging mechanism to promote
 - Siting to strength
 - Improved GFL controls (lower SCR)
 - GFM controls
 - Synchronous Condenser/Generator

 $\Delta AFL_{IBR1} = (-SCR_{withstand} + \alpha) \times P_{rated}$

Grid-Forming Projects Increase in Size and Number Fluence Contracted Projects Exceed 2000 MVA

Fluence PCS: Qualification & Integration

Picking Apart the PCS

- Documentation Diligence
- EMT Simulations (PSCAD, PF, PSSE, HiL)
- Factory Witnessed Test Direct Controls/Sequences, Accuracy, Speed, CMV, Black-Start, Short-time >>I
- Core Lab(s): Simulation & Validation Fluence PPC/Cube, 1..2xPCS, MV Trafo, Grid and/or Grid Emulators, Load banks
- Power Plant Controls (PPC) Adaption & Tuning in EMT

Terceira – Portugal

Confidential and Proprietary. Do not distribute. © Fluence Energy LLC. All Rights Reserved. | 6

ALL Requirements Apply to the Design of ALL Components

- PCS performance is tied to proper PPC controls and correct implementation of BESS and BOP
 - Protection
 - Stability
 - Plant Response time
 - Application Stacking
 - Service Sequencing

- Grid Code implications <u>do not stop at the PCS</u>
 - Plant Controls and Metering
 - Operation Modes (Subnetwork, Black-Start)
 - Aux system (e.g. LVRT/HVRT)
 - UPS
 - DCDC Converters (if applicable)
 - Battery Overload

Knowing your Limits

Short-term overload requires careful consideration, and constant dynamic re-assesment

Status Quo

2

Trade-Off

Confidential and Proprietary. Do not distribute. © Fluence Energy LLC. All Rights Reserved. | 8

Hardware Configurations

Single Winding Single GFM Controller Multi-Synched-Stack Single-DC-Bus

Multi Winding Multi GFM Controller Multi-Synched-Stack Single-DC-Bus

Single Winding Single GFM Controller Multi-Synched-Stack **Multi**-DC-Bus

Shared Winding Multi GFM Controller Multi-PCS-Pseudo-Synch Multi-DC-Bus

Common Mode Voltage (CMV) 🌔

Circulating Current (CC)

PPC's Coordinating Roles

Turning GFM Controls of PCS into Standardized Plant Products

How do we meet the needs of the many, while respecting the limits of all?

- Coordinate Plant Performance
 - Accurate P/Q, Energy
 - GFM-Droop/Inertia
- Increase plant stability
 - Balance Asymmetry
 - Outages
 - Oscillation damping
- Process and Report Total Plant Metrics
 - P, Q, MWh, Isc, MWs, Droop
 - "Re-Dispatch" GFM-Parameters
- Coordinate Sequences/Switches
 - MV/HVSG
 - Auxiliary
 - Self-Supply/Black-Start/Grid-Restoration

"Black-Start" is more than just Black-Start

Various Scenarios and Sequences for PPC:

- BESS Island Ready to resynch to healthy grid
- Subnetwork Unsignalled/unexpected reduction in Grid size, BESS dominant/solo
- Self-Supply Intentional low aux mode up to 72h to ensure BS ready at anytime
- Black-Start (per VDE) Commanded
 - Single PCS at U=0.1p.u.
 - Multi PCS ramp to 1.05p.u. in 10min
- Grid Restoration Commanded start to intentionally reduced Grid, BESS is solo

GFM-PCS: Droop vs. Inertia

- Inertial controls on PCS impede fast response of external power commands
- Instantaneous P response from both controls to ROCOF and Angle Jumps
- Inertia Power pulls back post ROCOF
- Inertia power undershoots post-Angle Jump

Note: Droop and H intentionally tuned to provide similar output thus aiding generalized comparison

Power Oscillation Damping (POD)

- TSOs require POD capabilities for GFL+GFM
- GFM Controls provide inherent damping
- Quantification/Specification of POD is complex

POD is crucial for safe operation → PPC needed to enhance POD capabilities of GFM-BESS at plant level.

Power Oscillation Damping (POD) Control

Define to Refine

COMPONENT STANDARDS

- PPC Specific Standards and Tests
- Carve out for "Pro-Islanding" clause
- Standardize SC Anatomy for PCS
- Adapt GFL performance tests for GFM
 - Max loading (P/Q, cont. and dynamic)
 - Voltage/Frequency Accuracy/Stability
 - Response Speed in Droop vs Inertia
 - etc...
- Update Safety Requirements
- High-Resolution, Time Synched Logging
- Firmware/Parameter Persistence and Tracking

GRID CODES

- Form follows function (MWs or SCL or Both?)
- Determine applicable metrics e.g.:
 SCR vs. ESCR vs. Voltage "Stiffness"/Sensitivity
- Focus on plant performance
- Don't overprescribe implementation, instead...
- Drive plant level test/validation criteria
- Define specific sub-applications
- Collaborate and Harmonize

Thank you!

Benjamin Joseph Braun

Principal Engineer – Power Controls benjamin.braun@fluenceenergy.com

Anatomy of GFM-SC Current

Standard Structure

- Pre-Fault Load
 - No-Load
 - Full Load
- HW Protection
 - Peak Current (ip, lk")
 - Duration X cycles
- Control (Virtual Impedance)
 - Max Current (lk',lk,lb)
 - Time to Ik, Ib
- Sustain
 - No "re-firing"
- Clear
 - Recover Voltage
 - Re-magnetization

Changing conditions create new challenges for grid operators

Storage is emerging as a valuable resource in this transition

Network Utilization

Changing generation resources and renewable intermittency causes transmission line congestion, which results in asset curtailment and redispatching

Energy storage can be deployed quickly on the grid to increase capacity on transmission lines through energy shifting or n-1 contingency reserves

System Stabilization

A growing share of inverter fed resources and changing load profiles create new system stability issues for grid operators

Energy storage with advanced grid forming controls supports grid stability and power system operation with complex applications, such as inertia, black start, oscillation damping control, and more

Fluence Ultrastack

Purpose built to meet the unique operational needs and technology requirements of T&D asset owners

Flexibility

Cost effective solution with rapid installation compared to alternatives

Scalability

Supports 50MW+ system sizes and complex grid requirements

Technology

Advanced grid services and critical asset IT security

Architecture

Fast system response and redundant controls

Availability 99%+ asset uptime and availability

Sustainable

Supports rapid grid transition to renewables

CASE STUDY A powerful asset for European grid interconnection and renewables transition

EPSO-G (Lithuania) Energy Cells – 200 MW / 200 MWh (50 MW per site)

SERVICES

- Inertia Contribution
- Renewable Integration
- Grid Restoration •

IMPACTS

- Increase Grid Resilience today
- Ensure stable operation during synchronization • with European Grid
- One of the largest energy storage project of its • kind

E ENERG

Confidential and Proprietary. Do not distribute. © Fluence Energy LLC. All Rights Reserved. | 19

CASE STUDY Strengthening energy security and renewable integration in Germany

TransnetBW (Germany) 250 MW / 250 MWh

SERVICES

- Grid stability
- Congestion relief

IMPACTS

- Ease bottlenecks transporting wind energy from northern Germany
- Avoids derating of lines
- Reduces redispatch cost & lowers end user energy cost

CASE STUDY

Better utilisation of existing power lines and lower cost for customers in Germany

TenneT TSO (Germany)

2 x 100 MW / total 200 MWh across two strategically positioned sites in the North and in the South

SERVICES

- Grid stability & increase utilisation
- Congestion relief

IMPACTS

- Ease bottlenecks transporting wind energy from northern Germany
- Reduces redispatch cost & lowers end user energy cost
- Reducing the need for grid expansion measures

