NOAA regional models (HRRR, RRFSv1, RRFSv2) status in 2025 - cloudiness issues, discovery & solutions

Stan Benjamin, Dave Turner

CIRES - CU Boulder,

NOAA Global Systems Lab (GSL)

Downward SW bias - 6h HRRR/RAP forecasts valid 17-20z - vs. SURFRAD obs - 2017-2025

Excessive SW radiation in HRRR and solutions

- Benjamin et al, 2025 – Mon. Wea. Rev., in review

HRRR/RAP 6h forecasts – SW↓ bias – averaged over all 14 SURFRAD stations

- Excessive SW↓ from both HRRR (3km) and RAP (13km)
- Improvement in 2020 with HRRRv4/RAPv5 – reduced cloud droplet size for subgrid-scale (SGS) clouds.
- But still too much SW↓

Edit chart »

Error Bars show 95% confidence

Time

Consistent across US: Excessive **SW** ↓ for <u>each</u> of the <u>14 stations</u>, even after 2020 improvement in HRRRv4

Discovery: Dry bias in HRRRv4 data assimilation - Ensemble mean removes near-saturation areas (clouds)

Main cause for HRRRv4 dry bias

- # of near-saturated points (RH>95%) decreases by 20-100% from ensemble mean.
- 3 different cases shown
- Benjamin et al. 2025 (in review)

Experiment designs

Investigate these two areas:

Data assimilation comparison

- HRRRv4-oper vs. Control

Cloud optical param. comparisons

- Control vs
 - HalfRc
 - Reduced SGS
 - Combined

	Experiment	Data	Forecast model version	Modification
	designs	assimilation		
	HRRRv4-	HRRRv4	HRRRv4	original
	Operational – since			
	Dec 2020			
	Control (new)	HRRRv3	HRRRv4	Data assimilation that
-				reduces dry bias
	HalfRc	HRRRv3	HRRRv4	Explicit cloud – droplet
				effective radius (Re)
				reduced by 50%
	Reduced SGS	HRRRv3	HRRRv4	Subgrid-scale cloud
				droplet Re reduced by
				33%, from 5.4 μm to 3.6
				μm.
	Combined	HRRRv3	HRRRv4	Explicit Re reduced 40%,
				SGS Re reduced 33%
	HRRRv3-	HRRRv3	HRRRv3 (larger Re,	HRRRv3
	Operational -		much stronger diffusion	
	Aug 2018-Dec 2020		for water vapor and	
			cloud hydrometeors)	
			than used in HRRRv4	

Configuration for HRRR SW bias experiments-CONTROL

- Model HRRRv4 configuration and physics Dowell et al 2022
 - HRRRv4 decreased excessive downSW flux due to smaller effective radius for SGS clouds (to Miles et al 2000).

→Add experiments with modified initial conditions

- Data assimilation HRRRv3 hybrid ens-var DA. (Benjamin et al 2016, Weygandt et al 2022 radar refl DA)
 - Avoids dry bias from HRRRv4 DA using 3-km ensemble mean for initial conditions.

Experiment designs

Data assimilation comparison
- HRRRv4-oper vs.
Control

Cloud/physics comparisons

- Control vs
 - HalfRc
 - Reduced SGS
 - Combined

Experiment	Data	Forecast model version	Modification
designs	assimilation		
HRRRv4-	HRRRv4	HRRRv4	original
Operational – since			
Dec 2020			
Control (new)	HRRRv3	HRRRv4	Data assimilation that
			reduces dry bias
HalfRc	HRRRv3	HRRRv4	Explicit cloud – droplet
			effective radius (Re)
			reduced by 50%
Reduced SGS	HRRRv3	HRRRv4	Subgrid-scale cloud
			droplet Re reduced by
			33%, from 5.4 μm to 3.6
			μm.
Combined	HRRRv3	HRRRv4	Explicit Re reduced 40%,
			SGS Re reduced 33%
HRRRv3-	HRRRv3	HRRRv3 (larger Re,	HRRRv3
Operational -		much stronger diffusion	
Aug 2018-Dec 2020		for water vapor and	
		cloud hydrometeors)	
		than used in HRRRv4	

SW↓ bias –diurnal variation – 1h forecasts

HRRRv4-oper Control (new) – HRRRv3 DA w/ HRRRv4 model

Improved DA reduces SW↓ bias by 10-35 W m⁻²

Experiment designs

Data assimilation comparison - HRRRv4-oper vs. Control

Cloud/physics comparisons

- Control vs
 - HalfRc
 - Reduced SGS
 - Combined

Experiment designs	Data assimilation	Forecast model version	Modification
HRRRv4- Operational – since Dec 2020	HRRRv4	HRRRv4	original
Control (new)	HRRRv3	HRRRv4	Data assimilation that reduces dry bias
HalfRc	HRRRv3	HRRRv4	Explicit cloud – droplet effective radius (Re) reduced by 50%
Reduced SGS	HRRRv3	HRRRv4	Subgrid-scale cloud droplet Re reduced by 33%, from 5.4 μm to 3.6 μm.
Combined	HRRRv3	HRRRv4	Explicit Re reduced 40%, SGS Re reduced 33%
HRRRv3- <u>Operational –</u> Aug 2018-Dec 2020	HRRRv3	HRRRv3 (larger Re, much stronger diffusion for water vapor and cloud hydrometeors) than used in HRRRv4	HRRRv3

Summary of SW ↓ bias results (Benjamin et al 2025, in review):

 Improvements (less SW↓ bias) from both improved DA and modified cloud optical parameters

Effect of improved data assimilation alone

	HRRRV4	control	%	Half Rc	Reduced	Combined	%
			decrease	–explicit	Rc - SGS		decrease
			Control –	clouds	clouds		Combined
			HRRRv4				– HRRRv4
July	81	67	17 %	62	60	52	36%
2022							
Sept	64	39	39%	21	27	13	80%
2019							
Feb	25	17	32%	10	9	4	84%
2022							

SW√bias (model – obs) for 6h forecasts valid 1800 UTC

Combined effect of reduced cloud droplet effective radius and improved data assimilation

2025 status - Rapid Refresh NWP Models in NOAA

- High-Resolution Rapid Refresh (HRRR)
 - New tests identifying dryness in initial conditions data assimilation issue (Benj et al 2025)
- Rapid Refresh Forecast System (RRFSv1)
 - Code frozen, in final evaluation. If passes evaluation, would become operational in summer 2026
 - Also has dry bias in initial conditions due to separate data assimilation issue.
- RRFS version 2
 - Uses different dynamic core (MPAS from NCAR), major NOAA development since 2024.
 - Will avoid data assimilation misdesigns in HRRRv4 and RRFSv1
- RRFS.v1 vs HRRR.v4
 - RRFSv1 generates too much and too intense convection. RRFSv1 is even drier than HRRRv4 and has poorer downward solar forecasts than HRRRv4.
 - HRRR.v4 will remain operational until RRFS.v2 (anticipated 2028-2030)
 - Other regional models (e.g., NAMnest) will be retired when RRFS.v1 becomes operational

Past and future NOAA regional rapid-refresh models

								Estimated >				
	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
HRRR	HRRR v3	HRRR v4									End w/ RRFS v2 imp	
RAP	RAP v4	RAP v5									End w/ RRFS v2 impl.	
RRFS v1							In evaluat.	Implem. if approvd			End w/ RRFS v2 impl.	
RRFS v2							Testing w/o DA	Testing w/ DA			Estim. Imple.	

Data assimilation problems causing dry bias

From DA using ensemble mean which eliminates most saturated 3-d volumes in HRRRv4 initial conditions Documented in journal manuscript submitted to MWR (Benjamin, James, et al., 2025)

RRFSv1

- Use of different 2m dewpoint temperature diagnostic (diff from HRRR or RAP diag) which exaggerates 2m dewpoint temp.
- Result: erroneous drying effect from the RRFSv1 data assimilation

Subsaturation introduced by use of ensemble mean for HRRRv4 initial conditions.

HRRR / RAP / RRFSv1 - Downward SW bias - vs. SURFRAD obs - 6h forecasts over time of day. April-May-June 2025

- HRRRv4 running 50-70 W/m² bias.
- RAP continues to be 10-20 W/m² lower bias than HRRR.
- RRFSv1 is worse than either HRRRv4 or RAPv5. It has even less cloudiness.
- RRFSv1 also has a time-lag radiation error – sun comes up 30 min late.
- All of this will be fixed in RRFSv2.

Conclusions: Excessive downward shortwave radiation (SW↓) in NOAA storm-scale NWP and strategies for reduction

- Continued evidence of excessive SW↓ even in storm-scale NWP (NOAA HRRR – 3km) across different climate regimes over the lower 48 US.
- Two strategies for reduction were formed and tested:
 - Modify data assimilation (DA) to reduce atmos dry bias
 - Modify cloud optical parameters Reduce cloud-droplet size for explicit and subgrid-scale clouds
 Both DA and cloud optical parameter strategies contributed to lowering
- SW↓ bias in all 3 seasons, both strategies contributing similarly.
- Data assimilation 'misdesigns' hampered clouds in both HRRRv4, RRFSv1.
- RRFSv1 has a worse dry (i.e., cloud) bias than HRRRv4 a separate DA problem. RRFSv2 will have clearly improved solar forecasts (via improved DA and cloud brightness. Keep HRRR cloud DA and soil DA.)

Recent Advancements in Wind, Solar and (Load) Forecasting

Lars Rohwer 06/24/2025

emsys-renewables.de

Three companies, one goal: 100% renewable energy!

- · Headquarters in Oldenburg, Germany
- · Approx. 250 employees
- · Operations on all continents
- · Over 20 years of experience

<u>emsys vpp</u>

- Grid Operation
- Network Platform

- Wind & Solar Forecasts
- Consulting

- Virtual Power Plant
- Balancing Power Services

AI / Machine Learning

- . Al weather models are well on their way, but have disadvantages
 - . Parameters for energy forecasts often unavailable
 - Smearing / smoothing effects
- Machine learning can help to improve NWP-based forecasts
 - extensive training opportunities
- . A wide range of data and data sources can be used new forecasting options
 - self-consumption
 - curtailment forecasts

Al / Machine Learning - Example

- DA market prices in
 Germany have very
 frequently been in negative
 territory this spring
- Up to 25 GW curtailments (market-driven)
- -> Grid operators need forecasts for curtailment volumes

Al / Machine Learning - Example

- A wide variety of input data, e.g. on consumption production prices
- enables a more accurate estimation of curtailment quantities

Comparison between Europe and the USA

- US-ISOs (grid operators in general) are clearly leading the way in dealing with (extreme) weather and uncertainty forecasts
- European grid operators have promoted smarter use of grids

Dynamic Line Rating (similar to FERC Order No. 881) is an established process **Grid Congestion Management**Including distributed producers
from 100 kW into the Redispatch
process

Vertical Grid Load
Prediction of the
vertical grid load at
network nodes of
different voltage levels

Grid platform combines all necessary information

Dimensioning of measures Master data **Flexibilities** Entity measures incl. optimization for Entity master data management Entity power forecasts cluster call-offs and own bottlenecks: incl. Consolidation incl. (Quality-) Reports exports for common control rooms Nonfunctional **Grid nodes** Vertical grid load forecasts on transformer building level and measured value import blocks Alerting Grid model **Grid analysis Ex-Post-Processes** grid modeling, including import of all Calculation of own bottlenecks in HV-grid common network models and switching API-Access Reports and processing of sensitivities requests **Grid platform**

UI-Platform, Data Exchange Service

Grid platform combines all necessary information

