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Discovery: Dry bias in HRRRv4 data assimilation -
Ensemble mean removes near-saturation areas (clouds)
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Experiment designs

Investigate these

two areas:

Data assimilation
comparison

- HRRRv4-oper vs.
Control

Cloud optical param.
comparisons
- Control vs
- HalfRc
- Reduced SGS
- Combined

[

Experiment Data Forecast model version | Modification

designs assimilation

HRRRv4- HRRRv4 HRRRv4 original

Operational - since

Dec 2020

Control (new) HRRRv3 HRRRv4 Data assimilation that
reduces dry bias

HalfRc HRRRv3 HRRRv4 Explicit cloud —droplet
effective radius (Re)
reduced by 50%

Reduced SGS HRRRv3 HRRRv4 Subgrid-scale cloud
droplet Re reduced by
33%, from 5.4 umto 3.6
um.

Combined HRRRv3 HRRRv4 Explicit Re reduced 40%,
SGS Re reduced 33%

HRRRv3- HRRRv3 HRRRv3 (larger Re, HRRRv3

Operational — much stronger diffusion

Aug 2018-Dec 2020 for water vapor and

cloud hydrometeors)
than used in HRRRv4




Configuration for HRRR SW |bias experiments-CONTROL

Model — HRRRv4 configuration and physics — Dowell et al
2022

. HRRRv4 — decreased excessive downSW flux due to
smaller effective radius for SGS clouds (to Miles et al 2000).

—Add experiments with modified initial
conditions

Data assimilation — HRRRv3 — hybrid ens-var DA. (Benjamin
et al 2016, Weygandt et al 2022 — radar refl DA)

. Avoids dry bias from HRRRv4 DA using 3-km ensemble
mean for initial conditions.
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Experiment designs

Data assimilation
comparison

- HRRRv4-oper vs.
Control

| L

Cloud/physics
comparisons
- Control vs

- HalfRc
- Reduced SGS
- Combined

Experiment Data Forecast model version | Modification

designs assimilation

HRRRv4- HRRRv4 HRRRv4 original

Operational - since

Dec 2020

Control (new) HRRRv3 HRRRv4 Data assimilation that
reduces dry bias

HalfRc HRRRv3 HRRRv4 Explicit cloud —droplet
effective radius (Re)
reduced by 50%

Reduced SGS HRRRv3 HRRRv4 Subgrid-scale cloud
droplet Re reduced by
33%, from 5.4 umto 3.6
um.

Combined HRRRv3 HRRRv4 Explicit Re reduced 40%,
SGS Re reduced 33%

HRRRv3- HRRRv3 HRRRv3 (larger Re, HRRRv3

Operational — much stronger diffusion

Aug 2018-Dec 2020 for water vapor and

cloud hydrometeors)
than used in HRRRv4




SW | bias —diurnal variation
— 1h forecasts

HRRRv4-oper
Control (new) — HRRRv3 DA
w/ HRRRv4 model
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Experiment designs

Data assimilation
comparison

- HRRRv4-oper vs.
Control

Cloud/physics
comparisons
- Control vs
- HalfRc
- Reduced SGS
- Combined

Experiment Data Forecast model version | Modification

designs assimilation

HRRRv4- HRRRv4 HRRRv4 original

Operational - since

Dec 2020

Control (new) HRRRv3 HRRRv4 Data assimilation that
reduces dry bias

HalfRc HRRRv3 HRRRv4 Explicit cloud —droplet
effective radius (Re)
reduced by 50%

Reduced SGS HRRRv3 HRRRv4 Subgrid-scale cloud
droplet Re reduced by
33%, from 5.4 umto 3.6
um.

Combined HRRRv3 HRRRv4 Explicit Re reduced 40%,
SGS Re reduced 33%

HRRRv3- HRRRv3 HRRRv3 (larger Re, HRRRv3

Operational — much stronger diffusion

Aug 2018-Dec 2020 for water vapor and

cloud hydrometeors)
than used in HRRRv4




Summary of SW | bias results (Benjamin et al 2025, in review):
e Improvements (Iess SWH bias) from both improved DA and

modified

decrease
Control -
HRRRv4

clouds

—expl|c:|t Rc

%

decrease
Combined
- HRRRv4

SW+ bias (model - obs) for
6h forecasts valid 1800 UTC

July 81 17% 62 36%
2022

Sept 64 39% 21

2019

Feb 25 32% 10

2022

Combined effect of reduced cloud
droplet effective radius and
Improved data assimilation



2025 status - Rapid Refresh NWP Models in NOAA

e High-Resolution Rapid Refresh (HRRR)
o New tests identifying dryness in initial conditions — data assimilation

issue (Benj et al 2025)
o Rapid Refresh Forecast System (RRFSv1)

o Code frozen, in final evaluation. If passes evaluation, would become operational in summer 2026
o Also has dry bias in initial conditions due to separate data assimilation issue.

e RRFS version 2
o Uses different dynamic core (MPAS — from NCAR), major NOAA development since

2024.
o Will avoid data assimilation misdesigns in HRRRv4 and RRFSv1

e RRFS.v1 vs HRRR.v4
o RRFSv1 generates too much and too intense convection. RRFSv1 is even
drier than HRRRv4 and has poorer downward solar forecasts than HRRRv4.
- HRRR.v4 will remain operational until RRFS.v2 (anticipated 2028-2030)
o Other regional models (e.g., NAMnest) will be retired when RRFS.v1
becomes operational



Past and future NOAA regional rapid-refresh models

Estimated - --------=--------- > ‘

2023 | 2024 | 2025

Testing
w/o DA

Testing
w/ DA
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Data assimilation problems causing dry bias

o HRRRv4 s RRESV_
10 —] From DA using ensemble * Use of different 2m
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Subsaturation introduced by use of ensemble
mean for HRRRv4 initial conditions.




HRRR / RAP / RRFSv1 - Downward SW bias - vs. SURFRAD obs
— 6h forecasts over time of day. April-May-June 2025
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Conclusions: Excessive downward shortwave radiation (SW|)
in NOAA storm-scale NWP and strategies for reduction

e Continued evidence of excessive SW| even in storm-scale NWP (NOAA
HRRR — 3km) across different climate regimes over the Iower 48 US

e Two strategies for reduction were formed and tested:
e Modify data assimilation (DA) to reduce atmos dry bias |:.
e Modify cloud optical parameters - Reduce cloud-droplet
size for explicit and subgrid-scale clouds

150
‘ HRRRV2 /
0| | RAPV3
o
g

e Both DA and cloud optical parameter strategles contrlbuted to Iowerlng
similarly.

Data assimilation ‘misdesigns’ hampered clouds in both HRRRv4, RRFSv1.
RRFSv1 has a worse dry (i.e., cloud) bias than HRRRv4 — a separate DA
problem. RRFSv2 will have clearly improved solar forecasts (via
improved DA and cloud brightness. Keep HRRR cloud DA and soil DA.)
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Benjamin, James, Turner et al, 2025 — Mon. Wea. Rev., in review
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Recent Advancements in Wind, Solar and
(Load) Forecasting
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€IMSYS Three companies, one goal: 100% renewable energy! y

paving the way for renewables

. Headquarters in Oldenburg, Germany "*{:‘;

. Approx. 250 employees ' > ”
. Operations on all continents 8 \

. Over 20 years of experience ‘:

services

emsysgrid energy&!yﬁ@ emsysvpp

. Grid Operation . Wind & Solar Forecasts . Virtual Power Plant
- Network Platform . Consulting . Balancing Power Services
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Al / Machine Learning

. Al weather models are well on their way, but have disadvantages
. Parameters for energy forecasts often unavailable
. Smearing / smoothing effects

. Machine learning can help to improve NWP-based forecasts
. extensive training opportunities

. A wide range of data and data sources can be used — new forecasting options
. self-consumption
. curtailment forecasts
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. DA market prices in

Germany have very
frequently been in negative
territory this spring

. Up to 25 GW curtailments

(market-driven)

. -> Grid operators need

forecasts for curtailment
volumes
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Al /| Machine Learning - Example

L « A wide variety of input
—— base prediction
—— curtailment corrected prediction data’ e'g' on
|l | consumption
production
] prices
2 * enables a more accurate
g %0 ey estimation of curtailment
o N .y
quantities
1.5 1t
1.0 1

time
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Comparison between Europe and the USA

» US-ISOs (grid operators in general) are clearly leading the way in dealing with
(extreme) weather and uncertainty forecasts

» European grid operators have promoted smarter use of grids

Dynamic Line Rating Grid Congestion Management Vertical Grid Load

(similar to FERC Order Including distributed producers Prediction of the
No. 881) is an from 100 kW into the Redispatch vertical grid load at
established process process network nodes of

different voltage levels

e e blle
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Grid platform combines all necessary information

Non-
functional
building
blocks

Alerting
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Grid platform combines all necessary information

Prognostizierter Netzaustand  Froghostizierter Netzzustand, inklisive empfohlener topologiscrer Malnahmen
Jetwnct  Won  now-W 050810241239 § B8 sowe2a 400 280520240200 @ Anwenden [ -]

Maximale Auslastung im Grandfall Maximale Auslastungn - 1




Thanks for your attention!
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