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I. Why probabilistic?

II. Five approaches in ISO markets
◦ Role of probabilistic solar / wind forecasts 

◦ Pros & Cons

III. Possible use of probabilistic forecasts: Demand curve for 
CAISO flexible ramp
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 Huge uncertainties…and they are growing 
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A. Motley, www.caiso.com/Documents/Briefing-Day-AheadLoadForecastingAnalysis-Presentation-Nov2018.pdf

Gross Load, March

DA Forecast Error, March
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 Huge uncertainties…and they are growing 

 Flaw of averages
◦ Planning under certainty leaves you vulnerable, undervalues 

options/flexibility

◦ Makes a practical difference in decisions & performance
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Other products (with cost-based 
commitment decisions)

Multiple energy scenarios

Energy Forecast (feasibility decisions only)

Energy Forecast (with cost-based dispatch 
decisions)

time
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 ISO implementations/proposals:
1. Simple Deterministic → let market parties self-hedge

2. Deterministic + Reserve products

3. Deterministic + Maintain feasibility under explicit contingencies

4. Multiple scenarios & probabilistic

5. Synthesis

 Features of all ISO implementations/proposals
◦ Mix of approaches

◦ Multisettlement (DA/RT)

◦ Rolling horizon (settlement & advisory intervals)

t

t+1

t+2
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 Basics:
◦ ISO runs deterministic DA market for energy based on forecast net load

 Parties can self-schedule
 Virtuals shift supply/demand to RT

◦ RT settles imbalances when uncertainties resolved

 Roles of probabilistic forecasts: 
◦ Market parties use them to increase profits and (indirectly) market efficiency

(Listen to Rob Gramlich!)
◦ Need to derive RT price distributions from net load probs

 Pros:Transparency/simplicity makes room for other complications in market models


 But: Inefficiencies occur if too much inflexible/too little flexible capacity committed 
◦ Yet if virtual bidders correctly characterize distribution of RT prices, then:

 Can eliminate most—but not all--inefficient commitments
◦ If slow-start units self-commit and project RT price distributions, then:

 (Nearly) all inefficiencies eliminated

momonline.blog/2018/01/15/taking-the-blinders-off/
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 Basic:
◦ ISO runs deterministic DA/RT markets for energy based on forecast, 
◦ … and also acquires capacity reserves

 Reserves can be dispatched economically or according to rules in RT
 Types: RUC, flexiramp, spin contingency-only, non-spin, replacement, reg-up, reg-down, …

 Roles of probabilistic forecasts: ISO sets reserve requirements based on:
◦ Quantile of distribution
◦ Ex ante B-C balancing of alternative requirements (Ortega-Vazquez & Kirschen, TPWRS, 2008)

◦ Endogenous B-C balancing within market software (demand curve) (CAISO Flexible Ramp)
◦ Dynamically update based on latest probabilities (Matos and Bessa, TPWRS, 2012)

 Pros:
◦ Transparency/simplicity if not too many products, & extensive experience
◦ A few reserves can cover multitude of scenarios

 “Allow extra travel time”

 But as markets accrue kludges, reserves may be both over-simplified and overly complex: 
 →Rube Goldbergian
 Miss important contingencies
 Become undeliverable

www.shoutfactory.com/product/max-headroom-the-complete-series
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 Basic:

◦ ISO runs deterministic DA/RT markets for energy based on forecast,

◦ … and also include contingency constraints, including:

 Contingency flow feasibility: Operating point still feasible under n-1, other                              
contingencies

www.imdb.com/title/tt2017038/mediaviewer/rm3761101056
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raisedonhoecakes.com/ROH/new-homeland-security-rule-legit-or-camels-nose-under-the-tent/
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 Basic:

◦ ISO runs deterministic DA/RT markets for energy based on forecast,

◦ … and also include contingency constraints, including:

 Contingency flow feasibility: Operating point still feasible under n-1, other                              contingencies

www.imdb.com/title/tt2017038/mediaviewer/rm3761101056

 Contingency dispatch+flow feasibility: Post-contingency redispatch to meet criterion

 Role of probabilistic forecasts: ISO could define plausible scenarios of extreme net loads, and 
ensure feasibility of redispatch in each

 Pros:

◦ Endogenize location and amount of deliverable reserves, 

 Perhaps lower cost than ex ante reserve products

 But: 

◦ Curse of dimensionality: Huge # scenarios, which ones?

◦ Successive uncertainties (multistage) not considered 

 uncertainty assumed completely resolved post-contingency

◦ Without probabilities, extreme yet highly unlikely cases may wag the dog

◦ Diminished price transparency
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 Basic:
◦ ISO optimizes market under multiple scenarios
◦ Objective is probability-weighted cost
◦ “Non-anticipativity” enforced for here-and-now decisions
◦ Wait-and-see decisions: one set per scenario

 Role of probabilistic forecasts: Random draws
◦ Time series, perhaps branching trees (Pinson et al., Wind Energy, 2009)

◦ Can oversample extreme events

 Pros:
◦ Theoretically simple: eliminates need to proliferate capacity products

 Mark O’Malley: “It’s about supply-demand balance”
◦ Endogenizes location & amount of deliverable reserves, perhaps at much lower cost than 

products

 But: 
◦ No profitability guarantee
◦ Curse of dimensionality
◦ If sensitive to probabilities, then how to specify?
◦ Variables & timing might not fit ISO timelines

http://s.hswstatic.com/gif/how-make-decisions-1.jpg

Picture
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 Scheduling & pricing: Reserve/Contingency-based market model
◦ Simplicity

◦ Can augment with robust optimization for RUC (ISO-NE)

◦ Could include extreme cases as contingencies or probabilistically

 Situational awareness; Inform selection of reserves & 
contingencies by off-line stochastic analysis
◦ Dynamically update reserve requirements/demand curves based on 

today’s weather

◦ Check deliverability of reserves, based on likely congestion patterns

◦ Run advisory intraday/RT stochastic optimization, translate solution into 
reserves for market runs
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http://www.caiso.com/Documents/AgendaandPresentation-MarketPerfomanceandPlanningForum-Feb202018.pdf

247
$/MWh
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◦ P(LBV|X) = P{NL(t+15) > NL(t)+X}
=  P{NL(t) + E(DNL(t,t+15)) +ε(15) > NL(t)+X}
=  P{ε(15) > X- E(DNL(t,t+15))}

◦ ε(15)’s distribution depends on load, BTM gen, & grid-scale wind & solar

 Then, expected cost
◦ If cost of LBV = $1000/MWh → marginal worth of 1 more MW of X is P(LBV)*1000/hr
◦ Assume 

 marginal value is zero if P(LBV) is <2.5%
 ceiling of $247

X MW

 First, probability analysis
◦ If X = amount of up-ramp capability scheduled at t…                                                       

… what’s the prob of load balance violation (LBV) at t+15 in FMM?
◦ Let NL(t) = FMM Settlement Interval Net Load forecast in interval t

247
$/MWh
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 Past 40 days of observations of:
◦ (t-37.5 min advance forecast of t+15) – (t-22.5 min advance forecast for t+15)

 Actually …  - (MAX of three 5-min Real-Time settlement forecasts within t+15)
◦ → Histogram
◦ Do this for all advisory intervals in FMM (~3 hours)

 Could this be conditioned on probabilistic forecast of load, wind and 
solar on a given day?
◦ Say that today there is less solar uncertainty than usual? Or more?

 A possible approach:
◦ Overall variance = SUM component variances + covariance terms
◦ Modify overall variance: replace 40-day variances of component forecast errors…

 …With today’s variances, based on probabilistic forecasts
 Then rescale histogram consistent with updated overall variance

twitter.com/grave_matters/status/480705820041433088
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 Market Design: 

◦ When do we reach the “Windows Vista” moment?
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 Market Design: 

◦ When do we reach the “Windows Vista” moment?

◦ Consequences of load imbalances not understood

 Use of Probabilistic Forecasts: 

◦ Data, data, data ….

◦ Integration in market products

 E.g., Lag may differ from what market products require

 NWP errors 2-4 hrs ahead

 But CAISO markets use 37.5, 52.5, …, 217.5 minute forecasts for FMM

 Plus 7.5, 15, 22,5…., 67.5 minute forecasts for dispatch

◦ Correlations of components depend on weather

◦ BTM solar particularly sticky, given its growth & unobservability
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Benjamin Hobbs
bhobbs@jhu.edu

www.fuelyourwriting.com/start-the-story-where-do-we-begin-01-25-10/

Curious?
Questions?

bhobbs@jhu.edu
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