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What’s Needed for Best Practice Forecasts?
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Value Chain: 
What is the value of solar power forecasting? 
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AI as Part of Systems Engineering
Engineering the Sun4Cast® System



StatCast: Regime Dependent Forecasting
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Dynamic Integrated foreCast System

DICast Integrator System
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Uncertainty Quantification

Analog Ensemble (AnEn) Approach

Station SMUD 67, forecast initialized at 12 UTC, 15 July 2014 
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Predict Probabilistic Power

Outputs from DICast+AnEn as displayed by the web display

Alessandrini, S. and T. McCandless, 2020: The Schaake Shuffle Technique to Combine Solar and Wind Power Probabilistic Forecasting, Energies, 13, 

2503; doi:10.3390/en13102503



Need for Public Data and Models

● Nearly all state-of-the-science 
forecasting systems rely on public 
observations and forecasting 
products.

● These products serve everyone 
and are the basis of forecasting to 
protect life, property, and critical 
infrastructure (such as the power 
system).

● Academic and private sector 
forecasts leverage these public 
products.

● Without these public products, the 
accuracy and value of power 
system forecasts will degrade.
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https://epic.noaa.gov/10-year-strategy-for-data-assimilation/

Products
•Climate Forecast System (CFS)
•Global Data Assimilation System (GDAS)
•Global Ensemble Forecast System (GEFS)
•Global Forecast System (GFS)
•Navy Operational Global Atmospheric Prediction System
•Nested Grid Model
•North American Mesoscale (NAM) Forecast System
•North American Multi-Model Ensemble (NMME)
•Rapid Refresh/Rapid Update Cycle

https://www.ncei.noaa.gov/products/weather-climate-

models/numerical-weather-prediction

https://www.ncei.noaa.gov/products/weather-climate-models/climate-forecast-system
https://www.ncei.noaa.gov/products/weather-climate-models/climate-forecast-system
https://www.ncei.noaa.gov/products/weather-climate-models/global-data-assimilation
https://www.ncei.noaa.gov/products/weather-climate-models/global-data-assimilation
https://www.ncei.noaa.gov/products/weather-climate-models/global-ensemble-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/global-ensemble-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/navy-operational-global-atmospheric-prediction
https://www.ncei.noaa.gov/products/weather-climate-models/navy-operational-global-atmospheric-prediction
https://www.ncei.noaa.gov/products/weather-climate-models/nested-grid
https://www.ncei.noaa.gov/products/weather-climate-models/nested-grid
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model
https://www.ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update
https://www.ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update


Renewable Droughts

● Certain meteorological patterns can set 
up over large regions that could make 
the variable renewables scarce for a 
prolonged period. These periods could 
set the stage for estimating the reserve 
requirements of the future.

● Forecasting for these renewable 
energy droughts is a new area of 
research. this work, under Grant 
number 2209711: “Frameworks: Large-
Scale Atmospheric Research Using an Integrated WRF Modeling, Visualization, 
and Verification Container Framework (I-WRF).”
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Funds from U.S. National Science Foundation (NSF) Directorate for Computer & Information Science & Engineering under Grant number 2209711: 
“Frameworks: Large-Scale Atmospheric Research Using an Integrated WRF Modeling, Visualization, and Verification Container Framework (I-WRF).”

MODE objects for WS10 < 3.0 m/s

Cumulative area: 75,562 grid squares (10,880,928 km2)Thanks to Drs. Jared Lee, Sara Pryor, & Xin Zhou

Nature Climate – News & Views (in press)



What if we add Storage?

● Storage can help alleviate short-

term gaps in renewables.

● What about longer term gaps? 

● How do we prepare to optimize 

the timing of charging and 

discharging?

● Perhaps multi-day forecasting will 

become even more critical.
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https://www.eia.gov/energyexplained/electricity/energy-storage-

for-electricity-generation.php



Summary

● Modern Forecasting systems blend:
○ Observations – public and private

○ Physical Models – public and private

○ AI/ML techniques to enhance the forecast

● As we increase the amounts of variable renewables, 

new challenges are emerging
○ Best use of storage

○ Preparing for energy droughts

○ Preparing for extreme events

● Meteorology is becoming increasingly important to 

     operating the energy system.
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