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= The Plan

* Why do we need probabilistic forecasts?
* How do we construct ensembles?
* How can we tell if the ensemble is “good™?

* How can we make an imperfect ensemble
better?

* How can we extract information from
uncertainty information from forecasts?

* What else do we need to know?



We wish to predict specific events

8/03/09 771mw up-ramp from 20:10 - 22:10 followed by a 738mw down-ramp from 22:40 - 00:50

800 MW igcrease then decrease over 4 hrs!
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Passing Thunderstorms \

Time (LST)




Why is Atmospheric Flow
Subject to Uncertainy?

Ed
Lorenz

Nonlinearity
Sensitivity to initial
conditions

Chaos — There are
limits to predictability
Think in terms of
attractors & manifolds
Requires probabilistic
forecasts



Ensembles & .
Uncertainty Quantification

« Account for
uncertainties due to
Imperfect initial
conditions and model
formulation
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 Produce more
accurate predictions
than any single model
realization

 Provide flow-
dependent uncertainty
CINEES

Forecast time



Short Range Ensemble Forecast System

30 hr forecast

10 m
Wind
500 mb
Height




How are Ensembles Generated?

e Perturb initial conditions

Different boundary conditions
Include different physics
Different models
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How Many Members are Needed?

Dependence of LVC R%2 on Ensemble Size for Weibull Climatology
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Good spread-error correlation only with very large ensembles (order hundreds).
From Kolczynski et al. (2011, MWR)).



Can we reduce that number?

Lead Time-Averaged CRPS Ratios (Subset:Full)
T, level sfc, Uncal. (dashed), Cal. (solid)
Experiment DJF

——HCA
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* 10 member ensemble with nearly
same CRPS value as 42 member
ensemble

 Lower CRPS with calibration

. . 2 3 45 6 7 8 910111213 14 15
(BayeSIan Model Averaglng) Number of Members in Subset Ensemble

Lee, Kolczynski, McCandless,
Haupt, MWR 2012



What if we had only one member?
Analog Prediction

RMSE of ensemble means Spread-skill relathionship

R"2=0.991 AnEn
R"2=0.859 ECMWF EPS
R"2=0.966 COSMO-LEPS
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Analog Ensemble (AnEn) Mean
European Center for Medium range Weather Forecasting (ECMWF) Ensemble Mean
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How do we determine a Good Match?

Since probabilistic, need to evaluate based on large

number of forecasts

Spread-skill

GES Disparsion Diay gram b TT Trak

The Brier Score

* Mean square error of a probability forecast
l n
BS =— —x. )
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1 is the number of forecasts

0

0.00

RMSE, Sandard Deviaton |

Too wide Toa nam ow

where

1%

/;is the forecast prob on occasion i

x;is the observation (0 or 1) on
occasion i

* Weights larger errors more than smaller ones
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Forecast PDFs and Observation

|

Continuous Ranked Probability Score

Forecast and Observed CDFs
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Cursulton Derity

Nt CRPS= [[F()-F, 0] &
Ffm(y) CDF of foreca: _s : Fob& (y) = () fory < observed value

E,bj()/) CDF of observation Fobs (y) = l for y = observed value -



.~ How do we improve the Match?

obs

Forecast
PDF

Forecast PDF

“bias” calibration
>

obs

Probability
Probability

“sprea

Wind Speed Wind Speed

* Centered (the right answer)

« Sharp (narrow range)

* Reliable (quantile predicted
matches quantile observed
averaged over time)



Example Calibration

Binned Variance Relation for 10m_AGL_U

Example Calibration
30hr Iea:d : :Feb : :54 fore:casts

Techniques

Linear Variance Calibration
Ensemble Kalman Filter
Quantile Regression
Bayesian Model Averaging
Kernal Density Methods
Analogue Method

Many others, including
logistic regression,
nonhomogeneous Gaussian
regression, EMOS, ....

...............................................................................
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Linear Variance Calibration
Kolczynski et al. (2009, MWR)).




Forecast Impact and Quality Assessment Section

Aviation decision making—constraint

U.S. Department of Commerce | National Oceanic & Atmospheric Administration | NOAA Research | National Weather Service R
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Comparing the Two Strategies Over Time

1-Day Ahead Forecast ;" 3TIER  ::May-Oct 2013
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more over a 6-

} Net 20.5 GWh
month period!

3TIER P70 and 50% scaled forecast similar risk exposure (27% vs. 28%)
3TIER P70 scheduled 20.5 GWh more energy than scaled forecast!

*Reliable risk and more energy scheduled, day-ahead
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Making Actionable Decisions From Probabilistic Forecasts
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Summary

» The atmosphere is inherently Chaotic

» Ensemble prediction embraces and ...
guantifies the uncertainty, producing 'A _\-

> Better mean forecasts
> Estimates of uncertainty

> The ensemble should be calibrated

»Research is showing
> Better ways of creating ensembles

> Better ways of blending ensemble
Information via postprocessing

» Such probabillistic forecasts can enhance decision-making




