NERC

Are We Prepared?

Planning a Grid with Increasing Energy Storage

Ryan D. Quint, PhD, PE Senior Manager, NERC NERC/NAGF/ESIG Workshop on Energy Storage September 17, 2019

Step 0: Where is the energy storage located?

BPS-Connected

Distribution-Connected

Source: ElectraNet

Source: ReVision Energy

Interconnection Studies

Available Models

Do we have adequate models to be able to capture the behaviors of inverterbased resources?

Modeling Practices

Are we correctly/reasonably using the models to capture the critical characteristics of inverter-based resources?

Interconnection Studies

Are sufficient studies being performed to adequately capture potential reliability risks?

Reliable Operation

Are interconnection studies serving to ensure reliable operation of BPS?

Interconnection Studies

Available Models

Do we have adequate models to be able to capture the behaviors of inverterbased resources?

Modeling Practices

Are we correctly/reasonably using the models to capture the critical characteristics of inverter-based resources?

Interconnection Studies

Are sufficient studies being performed to adequately capture potential reliability risks?

Reliable Operation

Are interconnection studies serving to ensure reliable operation of BPS?

Source: WECC

Dynamic Simulation Modeling Overview of Dynamic Models

Added Parameter Values:

- SOCini initial state of charge; user-entered
- SOCmax max state of charge
- SOCmin min state of charge
- T discharge time [sec]
- Paux auxiliary input for supplemental controls

Short-Circuit Modeling

- Fundamentally...
 - Voltage dependent current injection model likely "best bet"
- Pragmatically...
 - Added complexities more complicated
 - Charging/discharging operating states
 - Controls during and across operating states
 - Short-term inverter-based capabilities
 - Mid-term dynamic response of controls
 - No specifications or grid requirements on behavior on-fault
- Much work needed in this area...

- Existing modeling capability fairly crude
- Will lead to near-term modeling challenges
 - Need for tool capability advancements
- No capability to model hybrid resources
 - No linkage between gen and battery coordination
- No state of charge modeling explicitly

General	Type & Location	nĬ	Status	Energy Pattern	Commitmen
Flexible Energ	y Pattern Setting			Fixed Energy Patterr	Setting
Pumping Maximum Capacity (MW): 100					
Pumping Minimum Capacity (MW):		0	_	Weekly Energy: 0	
Pumping Price (\$	/MWh]:	0			
Generating Maximum Capacity (MW):		100	_	Monthly Mode	
Generating Minimum Capacity (MW): Generating Price (\$/MWh):		0			
		200		Trodity Capacity Distribution	

Source: WECC, GridView

• In a nutshell... Work is needed across the board

Tool/Timeframe	Modeling Capability	Modeling Practices	
Short-Circuit			
EMT		Limited Experience	
Dynamics/Stability	Improvements Needed		
Steady-State	Necded		
Production Cost			

• If we see this as a rapidly emerging resource, we as an industry need to get to work ASAP.

Distribution-Connected Energy Storage Modeling

- Distribution-connected energy storage = DER
- DER modeling practices developing/advancing

Dynamic Modeling for DER Energy Storage

Dynamic Modeling for DER Energy Storage

- Can represent aggregate R-DER
- Capability to represent energy storage (typeflag param)
- Does not emulate charge/discharge battery dynamics

if Vit (terminal voltage) a Vor then awitch to

position 1, else position 0

- *typeflag* parameter used to represent energy storage
- DER_A does not emulate charging and discharging (as in reec_c)
- DER_A applicability in simulations
 - If energy storage device capable of providing many minutes to hours of output (or charging), then little impact on state-of-charge during a 10–30 sec simulation – model is adequate.
 - If battery only has few seconds of charge/discharge capacity, DER_A not suitable for these types of simulations
 - DER_A may not be suitable for simulations where energy storage changes state (i.e., charge to discharge, vice versa) mid-simulation

BPS Planning Considerations

Expected Performance

- Four quadrant P-Q capabilities
- Ability to provide ERSs
- Need for clear guidance on this subject
 - IRPTF: BPS-connected energy storage devices
 - SPIDERWG: Energy storage as growing DER element
- Recommendation: Utilize NERC IRPTF and SPIDERWG to extent possible
 - Industry-wide expertise and perspectives captured in stakeholders
 - Effectively bringing solutions to table quickly
 - Connected to large industry groups very well

Questions and Answers

Ryan Quint, PhD, PE Senior Manager Advanced System Analytics and Modeling North American Electric Reliability Corporation Office (202) 400-3015 Cell (202) 809-3079 ryan.quint@nerc.net