

MISO Interconnection Queue Overview – Storage, Hybrid Resources

Workshop on Battery Storage, Hybrid Resources, Frequency Response and Grid Services September 17, 2019

Generator Interconnection: Overview

The current generator interconnection active queue consists of 625 projects totaling 98.6 GW

Historic trends indicate growth in development of renewable energy

Chart values per MISO's interconnection queue database (by date processed into the queue)

Storage in MISO

MISO

What is a Hybrid Interconnection?

A Generating Facility that utilizes more than one fuel source to inject power on to the Transmission System

Hybrid Interconnections

MISO

Modeling of Storage in MISO

Generator Interconnection Studies

- Interconnection Studies model Energy Storage as positive and negative generators
- Study at +/-100% output in both summer peak and shoulder peak study models
- Modeling assumptions are discussed at MISO stakeholder forums (PSC)

Long-term Planning (MTEP)

 Storage with Interconnection Service will be dispatched up to its NR (Network Resource) level based on the economics in the base dispatch

Generator Interconnection Dispatch

Fuel Type	Summer Peak Dispatched as % of Interconnection Service	Shoulder Peak Dispatched as % of Interconnection Service				
Combined Cycle	100%	50%				
Combustion Turbine	100%	0%				
Diesel Engines	100%	0%				
Hydro	100%	100%				
Nuclear	100%	100%				
Steam – Coal	100%	100%				
Oil	100%	0%				
Waste Heat	100%	100%				
Wind	15.6%	100%				
Solar	100%	50%				
Battery	+/- 100%	+/- 100%				

Hybrid Interconnection Dispatch

Scenario Wind Solar		ğ	ode	Steady State			Steady State				NRIS or Deliverability						
	age	/s iste	Ĕ	(Shoulder Peak)			(Summer Peak)			(Summer Peak)							
	Sol	Stora	MM Reque	Storage	Wind	Solar	Storage	Hybrid Output	Wind	Solar	Storage	Hybrid Output	Wind	Solar	Storage	Hybrid Output	
1	100	100 50	0	120	Discharging	96	24	0	120	15.6	50	0	65.6	80	40	0	120
			Charging	N/A													
2	2 100 50 0	0	150	Discharging	100	50	0	150	15.6	50	0	65.6	100	50	0	150	
				Charging	N/A												
3	3 100 0 5	50	50 120	Discharging	80	0	40	120	15.6	0	50	65.6	80	0	40	120	
				Charging	0	0	-50	-50	0	0	-50	-50	N/A				
4	100 0 5	50	150	Discharging	100	0	50	150	15.6	0	50	65.6	100	0	50	150	
			Charging	0	0	-50	-50	0	0	-50	-50	N/A					
5	5 0 100	50 120	120	Discharging	0	50	50	100	0	80	40	120	0	80	40	120	
				Charging	0	0	-50	-50	0	0	-50	-50	N/A				
6 0 100	50 150	150	Discharging	0	50	50	100	0	100	50	150	0	100	50	150		
			Charging	0	0	-50	-50	0	0	-50	-50	N/A					

Study Practices for Storage – Charging

□ Energy storage requests that are expected to charge from MISO Grid:

 Storage requests will be studied as "negative generation" in both summer peak and shoulder peak scenarios at full output in the DPP studies

□ Storage devices :

- are considered as a generation asset if they are requested through the GI queue; NERC TPL 001-4 standard will be applied as if the storage device is a generator and not a load,
- have the capability to make offers for charge and discharge in the markets similar to other generators, and
- will be responsible for Network Upgrades coming out of GI studies, where the GI study criteria can be applied consistently if they are studied as negative generation in DPP studies.

Study Practices for Storage – Charging

- Storage devices are required to have Transmission Service to withdraw energy from the Grid
- Obtaining a GIA does not grant Transmission Service
- □ IC can either:
 - be an independent Load Serving Entity (LSE) and Market Participant (MP), and directly request for new transmission service (NITS or Point to Point) from MISO, or
 - work with another existing MP/LSE service to obtain transmission service

Distribution-connected Interconnections

- Coordination is required for interconnection requests with facilities connecting to distribution system (non-MISO)
- If MISO and the affected TO believe there is potential for reliability issues, parties will engage the interconnection customer and perform a system impact study and if upgrades are needed a facility study

MISO References

- MISO Website
 - <u>www.misoenergy.org</u>
- MISO Generation Interconnection
 - <u>https://www.misoenergy.org/planning/generator-interconnection/</u>
- Interconnection Process Working Group
 - <u>https://www.misoenergy.org/stakeholder-</u>
 <u>engagement/committees/interconnection-process-working-group/</u>

Questions?

Cody Doll

Principal Resource Utilization Engineer (651) 632-8575

cdoll@misoenergy.org

