

Our Members

- manufacturers
- component suppliers
- system integrators
- developers
- independent generators
- electric utilities
- large end-users
- law, finance, consulting

Technologies represented

- mechanical storage
- power-to-gas storage

Origis Energy

- battery storage

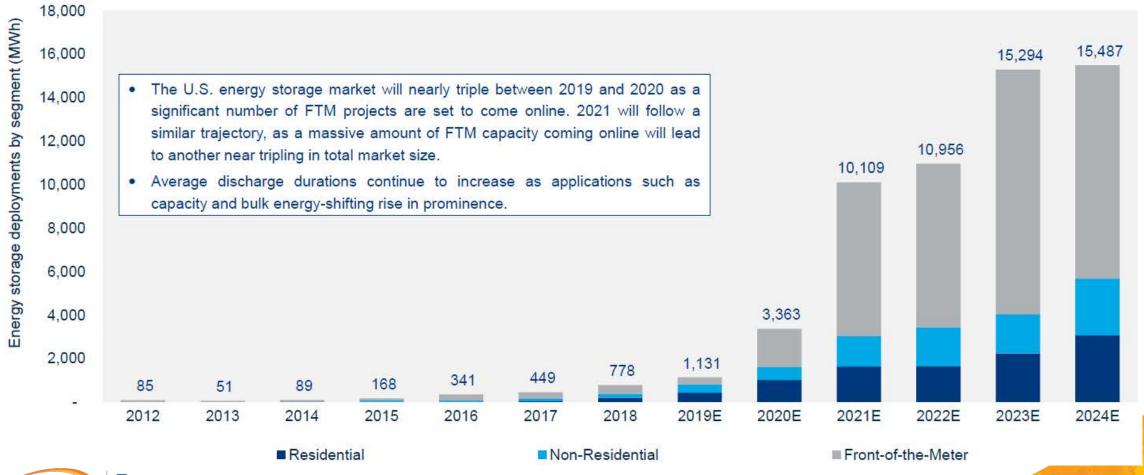
Panasonic

POWER EDISON

EN-RGY

Pattern

PRISMA



U.S. market will reach 15.5 GWh in annual deployments by 2024

4-hour systems becoming the norm for front-of-the-meter systems; average BTM durations inch toward 3 hours

U.S. energy storage annual deployment forecast, 2012-2024E (MWh)

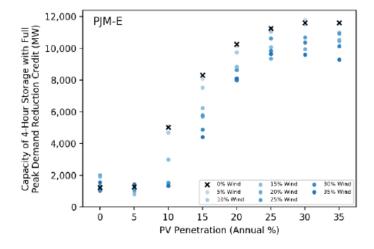
Capacity Qualification & Value of Storage

Divergent approaches

- ISO-NE: 2 hours (performance market)
- MISO & SPP: 4 hours
- PJM: 10 hours
- NYISO: differing values by 2/4/6/8 hours + change in value after next 1 GW + quadrennial restudy
- Uniform "capacity value" in tension with heterogeneous resources
 - Storage has energy limitations
 - Generators have forced outage conditions
 - Renewables lack dispatchability
 - Demand resources are block-loaded

Different reliability contribution profiles → relative capacity contributions, which may change with supply mix

Recent Findings on Capacity Value of Storage

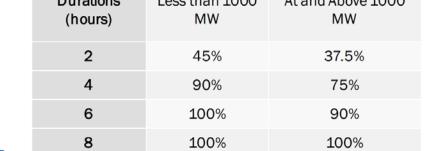

Analysis of PJM (Current) by Astrape Consulting

Analysis of PJM Futures by NREL

Figure 2. Capacity Value of Storage in PJM Under Varying Durations and Penetrations

Duration (Hours)	Penetration (MW)	Capacity Displaced (MW)	Capacity Value (%)
2	1,000	1,000	100.00
2	2,000	2,000	100.00
4	1,000	1,000	100.00
4	2,000	2,000	100.00
4	4,000	3,996	99.90
4	8,000	7,648	95.60
6	1,000	1,000	100.00
6	2,000	2,000	100.00
6	4,000	4,000	100.00
6	8,000	8,000	100.00
6	10,000	9,789	97.89
6	12,000	11,200	93.33

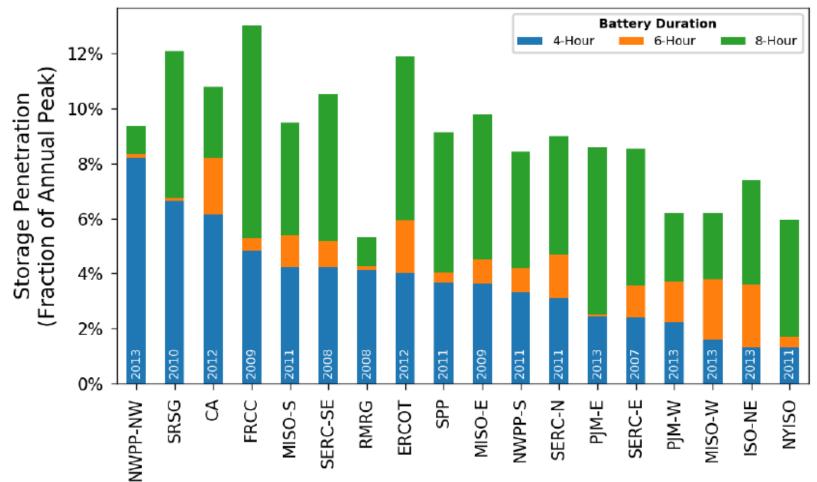
Figure 3. Capacity Value of 4-Hour Storage in PJM-East and PJM-West Under Varying Levels of Renewable Energy (Source: NREL)



14,000

PIM-W

NYISO Tariff Filing


Durations (hours)	Less than 1000 MW	At and Above 1000 MW
2	45%	37.5%
4	90%	75%
6	100%	90%
8	100%	100%

The Potential for Battery Energy Storage to Provide Peaking Capacity in the United States

Denholm et al., 2019

Commitment & Optimization and Storage

- RTOs vary in approaches, but each raises issues
 - PJM & ISO-NE both do not implement state of charge as a bidding parameter, lack means to optimize in DA even if implemented → potential for infeasible schedule
 - NYISO requires ISO-management of state of charge for storage in capacity market pursuant to DA schedule, lack of make-whole payments → potential for dispatch that harms economics
- Tension between flexibility/lack of commitment needed for battery storage and markets built on commitment logic
 - Energy markets → RT participation and self-scheduling generally ideal, do not need DA optimization
 - Capacity markets → generally require offer obligations, need DA optimization
 - MISO limits offer obligations to hours coincident with peak
- Storage with transition times (e.g., pumped hydro, compressed air) may need DA optimization
 - Longer-duration storage may seek multi-day optimization

Market Mitigation and Storage

- Concerns over unclear or onerous market mitigation emerging
 - NYISO proposes buyer-side mitigation rules be extended to <2 MW storage
 - Tension with storage sited precisely to resolve a T&D constraint
 - Questions over cost-offer development in SPP, PJM
 - Management of limited energy → opportunity cost in addition to "fuel" cost and O&M cost
- Tension between strategies for de-rating / management of limited energy and mitigation logic of physical withholding
 - Compounded for dual participation storage meeting end-user and/or distribution system needs
 - ERCOT NPRR 915 allows units <10 MW to make bids for energy only in intervals desired

Hybrid Storage + Generation Model

- Unclear how Order 841 will be applied to hybrid resources
 - ESA seeks a technical conference or notice of inquiry at FERC
- Several classes of issues merit discussion
 - Interconnection
 - Market participation
 - Capacity valuation
- ESA + GridStrategies have released <u>Enabling</u> <u>Versatility: Allowing Hybrid Resources to Deliver</u> Their Full Value to Customers
 - Summarizes main issues and potential remedies jumping off point for reforms

Enabling Versatility:

Allowing Hybrid Resources to Deliver Their Full Value to Customers

Rob Gramlich and Michael Goggin, Grid Strategies LLC Jason Burwen, Energy Storage Association

September 2019

Order 841 Starting Other Conversations

- Market products & designs to take advantage of storage flexibility
 - Fast frequency control
 - ERCOT to implement first US market for fast frequency response
 - Load/supply-shift product (as opposed to arbitrage)
 - Improved energy price formation for flexibility
- Interconnection updates
 - Study methods that account for intended use (i.e., not charging on peak)
- Storage-as-transmission
 - Regulatory framework for "interconnection," RTO/ISO control, cost recovery, interactions with generation
 - Nov 5-6 FERC workshop may include discussion
 - Transmission planning methods and data

State-RTO Interactions on Storage

- State actions to drive storage will influence RTOs
 - Deployment targets
 - Incentive programs
 - Utility programs
 - Energy efficiency
 - Non-wires alternatives
 - Clean Peak Standard
- RTO rules will affect state policy goals
 - 100% renewables/clean energy goals
 - Deployment targets
- After Order 841, storage is will be a central site for coordination between states
 & RTOs
 - Accounting for charging energy
 - Wholesale interconnection
 - Distribution access tariffs
 - Multiple-use (wholesale vs retail) framework

