Realistic modeling of sub-hourly flexibility and energy storage in resource planning

ESIG 2023 Fall Technical Workshop

October 25, 2023 La Jolla, California

Arne Olson, Senior Partner

Need for grid services will grow with higher penetrations of wind and solar generation

- Grid operators have always balanced variability and uncertainty in demand and supply using ancillary services
- + The need for grid services will grow as wind and solar increase due to increased variability and forecast errors
- The need for grid services will also become more dynamic as grid conditions change with the weather

Source: E3, Predicting Reserve Needs Using Machine Learning, project partially funded with grant from ARPA-E

Operational Flexibility Drivers

Reserve types and timescales

All reserves are <u>held</u> in one timeframe to prepare for another timeframe

Reserves are <u>used</u> or <u>released</u> when needed during grid operations

Portfolio planning framework

Workflow for valuing operational flexibility in planning

E3's RESERVE tool uses machine learning for dynamic operating reserve calculation

Machine learning generates reserve needs using artificial neural network

PLEXOS production simulation of CAISO system validates operability

Summary and CAISO Comparison

• Estimate cost, GHG and curtailment savings

E3 Team: Adrian Au + Charles Gulian +
Saamrat Kasina + Jimmy Nelson + Patrick
O'Neill + Arne Olson + John Stevens + Yuchi
Sun + Vignesh Venugopal + Mengyao Yuan

+ ARPA-E PERFORM program provided grant funding

+ CAISO was our industry partner

Probabilistic uncertainty from machine learning reserves

Multi-stage production simulation captures sub-hourly operational flexibility needs and benefits

Isolating sub-hourly operational flexibility value to supplement capacity expansion modeling

Case study: explore tradeoffs in thermal cycling vs. renewable curtailment

- Lowering output from thermal units during heavy solar production hours can decrease solar curtailment and thereby make solar more economical
- + BUT cycling thermal units can increase wear and tear
- Also, turning plants off can decrease the flexibility of the system to respond to higher net loads
- Production simulation can explore the tradeoff between increased thermal cycling and renewable curtailment, while simultaneously exploring the reliability of different operational strategies

Case study: value of batteries

- Production cost modeling can identify the most economic way to operate batteries
 - Timing of batteries providing energy arbitrage, regulation, spinning reserve, flexible ramping
- Can inform how to manage battery state of charge in operations
- + Can quantify battery cycling
 - Helps to understand the impact of battery contract terms about number of cycles allowed

Capacity expansion modeling includes options to increase flexibility, for a cost

Planning models include options to increase flexibility... at a cost

Increase load flexibility

Make solar or wind curtailable

Build, retire or retrofit thermal plants to improve flexibility

Improve hydro flexibility

Build or upgrade ties to other systems

Theoretical Flexibility cost curve: Dependent on system conditions and the resource portfolio

Portfolio planning framework

Higher battery penetration adds flexibility and reduces reserve prices

Sun, Yuchi, et al. "Machine learning derived dynamic operating reserve requirements in high-renewable power systems." Journal of Renewable and Sustainable Energy 14.3 (2022). Available at: https://www.osti.gov/servlets/purl/1872755

Higher battery penetration adds flexibility and reduces reserve prices

Sun, Yuchi, et al. "Machine learning derived dynamic operating reserve requirements in high-renewable power systems." Journal of Renewable and Sustainable Energy 14.3 (2022). Available at: https://www.osti.gov/servlets/purl/1872755

+ Increasing flexibility from batteries

leads to decreasing reserve prices

For organized markets, operational studies are replaced by ancillary service price forecasts

- Organized markets provide the grid services needed for operations, at a price
- Utilities in organized markets need to be concerned not with operations of their own system, but rather the price of grid services from the market
- + Grid service prices will change as the resource mix changes

Ancillary service markets are small and prices are dynamic with changes to the resource mix

- Storage participation has already reduced average AS prices in the CAISO market today +
- Frequency of low ancillary service prices rapidly increases between 2023-2025 as storage further + saturates the market
- **Reg down saturates more slowly as seen in current market trends** +

Average AS Prices by Year (\$/MW-hr)

Thank you!

Arne Olson, Senior Partner <u>arne@ethree.com</u>

