

Research Agenda for Transformed Power Systems

Julian Leslie Head of Networks and Chief Engineer – National Grid Electricity System Operator

Mark O'Malley

Chief Scientist Energy Systems Integration Group & Professor at University College Dublin

Co-Chairs of G-PST Research Agenda Group

30th November 2021

We are teeing it up as we want you to get engaged

Outline

- What is G-PST
- Pillar 1 & the Research Agenda
- A few "shallow dives"
- What we have achieved so far
- Why you should get involved
- How you can get involved

G-PST – a global response to an urgent need

G-PST Core Team Technical Institutes Developing Country System Operators

https://globalpst.org/

March 2021

https://globalpst.org/wp-content/uploads/042921G-PST-Research-Agenda-Master-Document-FINAL_updated.pdf

Characteristics of variable renewable energy resources

- Growing rapidly
- Spatially disperse
- Variable and somewhat difficult to predict
- Inverter Based Resources (IBR)
- Thermal, voltage, frequency, instability etc.

Pinson, P., Madsen, H., Nielsen, H., Papaefthymiou, G. and Klöckl, B., From probabilistic forecasts to statistical scenarios of short-term wind power production, Wind Energy, volume 12, issue 1, January 2009

NARIS, National Renewable Energy Laboratory

Nicolaos Cutululis - Technical University of Denmark

Research Program	Description	Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	New tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black StartCreating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.		1
ServicesQuantifying the technical service requirements required of future power system to maintain the supply-demand balance reliably and at least cost.		7

Cost effective reliability of the grid an integrated problem

Comparison of the second second

Turbine technology

Aerodynamic control
 Generator control
 Plant control
 Integrated Storage
 Advanced Power Electronics

Plant level

(Multi-Objective) optimized design and operation
 Improved Self-Accommodation and provision for grid services via
 Automatic Generation Control (AGC) including: Wake Steering,
 Panel Tilt

Control, Integrated Storage, H2 generation during high production.
Control systems integrated at plant level to maximize benefits.
Combined physical sensing and advanced forecasting to help operate hybrid plant as "dispatchable" and self-accommodating power.

Hybrids

 Combination of multiple (a) utility-scale renewable energy generation sources or (b) renewable energy generation and energy storage technologies
 E.G. Wind, Solar PV, Solar CSP, Hydro, Geothermal, Storage (Battery, Pumped Hydro, Hydrogen)

Leverage complementarity of resources and take advantage of unique technology characteristics.

System level

"How these technologies fit together"
Maximize the pace of deployment of renewable energy systems
Maximize the use of interconnection points within existing transmission system
Increase the flexibility and resilience of our generation system
Tailor Renewable generation to location to provide important services such as baseload/peaker plants etc.

Voltage Oscillations in Scotland in 2021

Background

- On 24/08/2021 severe voltage disturbances were observed on the SSEN-T and SPEN transmission systems.
- Major disturbance lasted 20-25 seconds on two occasions, approx. 30 minutes apart
- Investigation of available data suggests:
 - The oscillations with the largest magnitude were in the north of Scotland
 - The oscillations had a frequency of ≈8 Hz

Š

 Some Users tripped off during the disturbances

What is being done?

- We provided short term operational advice to our control room, focussing on system strength
- We need to understand nature of these oscillations and their source:
 - Data requested from Users (see next slide)
 - Working group convened with ESO and TO representatives to investigate events in more detail, aiming to:
 - Investigate the underlying drivers for the oscillations
 - EMT modelling of the supergrid network in the north of Scotland
 - Analyse events to explore underlying system behaviours
 - Investigate and recommend remedial actions that can be explored further with Licensees and/or Users as appropriate
 - Assess suitability of alternative screening techniques for use in operational timescales

national**gridESO**

Data requested

- To assist with the investigations, and to help identify potential triggering events or conditions, Users in Scotland were asked to provide:
 - Metering data at the times of the oscillations
 - Any alarms or actions from protection systems that may have taken place during the events
 - Other SCADA alarms or events that indicate abnormal or unusual operating conditions during the events
 - Their network configuration including number of turbines in service
 - Any change in state of plant, such as turbines being taken in or out of service
 - · Any available fault recorder traces
 - Any controller tuning or framework updates carried out in the preceding months
- These can help in the modelling and analysis work to identify and assess potential triggers

Innovation projects on modelling

- Having accurate/representative of models of the network and the users is very important
- Understanding the risk of control system interactions as converter based generation increases will requires detailed electro-magnetic transient (EMT) studies to be carried out which in turn requires more detailed modelling of the network as well as the converters
- Innovation Project Transmission Owner Tools for EMT Modelling (TOTEM)
 - TOTEM which is developing a full GB network model in the EMT environment
 - <u>https://smarter.energynetworks.org/projects/nia_shet_0032/</u>
- Innovation Project Developing Enhanced Techniques to Evaluate Converter-dominated Transmission System Operability (DETECTS)
 - DETECTs is exploring the best practices for conducting such EMT studies using a specific study case in an area where converter-based generation is already prominent
 - <u>https://smarter.energynetworks.org/projects/nia_ngso0031/</u>
- Innovation Project Probabilistic planning for stability constraints
 - This is exploring, developing and testing cutting-edge automated and probabilistic approaches for modelling of angular stability. This will enable year-round boundary capability calculation for stability accounting for a number of sources of variability and uncertainty and enabling ESO to consider the possible issues across the system.
 - <u>https://smarter.energynetworks.org/projects/nia_ngso0036/</u>

Research Program Description		Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	Tools and MethodsNew tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black Start	Creating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.	1
Quantifying the technical service requirements required of futureServicespower system to maintain the supply-demand balance reliably and at least cost.		7

CONSORTIUM Co-led by NREL, University of Washington, and EPRI

The **UNIFI Consortium** is a forum to address fundamental challenges to the seamless integration of grid-forming (GFM) technologies into power systems of the future

Bringing the industry together to unify the integration and operation of inverter-based resources and synchronous machines

Three major focuses:

- **Research & Development** (Modeling, Controls, Hardware, Integration & Validation)
- **Demonstration & Commercialization** (Large Demonstrations, IP Management, Products, Standards)
- ۲ **Outreach & Training** (Education, Workforce **Development, Communications, Events)**

Research Program Description		Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	Tools and MethodsNew tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
PlanningNew planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.		15
Black Start	Creating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.	1
Quantifying the technical service requirements required of futureServicespower system to maintain the supply-demand balance reliablyand at least cost.		7

IBR research Team

IBR Research Team Stability Tools Inventory: Status and Needs

August 23rd 2021

Titleist

Titleist

https://globalpst.org/wp-content/uploads/Tools-Team-Presentation.pdf

Research Program Description		Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	Tools and MethodsNew tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	n of the Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black Start	Creating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.	1
ServicesQuantifying the technical service requirements required of future power system to maintain the supply-demand balance reliably and at least cost.		7

Table 4. Control Room of the Future Research Programme Questions

20. How can operators identify critical stability situations in real-time and optimize system security?

21. How can system operators get relevant real-time visibility and situational awareness of the state of the power system with increasing penetrations of IBR and DER?

22. How can system strength, inertia and limits of stable frequency range be monitored in real-time in high IBR systems?

23. What are the appropriate methodologies to visualize and interpret relevant information for improved decision support for fast real-time control actions?

24. What quantities must be monitored, screened, and validated in real-time to ensure that there will be adequate flexibility availability from uncertain system resources in the near-term?

25. How can control capabilities for IBR-based system assets (FACTS, Line Impedance adjusters, etc.) and network flexibility more generally be maximized to enhance reliability and/or reduce costs.

26. Are there sufficient flexibilities available in the near-term to compensate variations in load and generation (fast changes as well as long lasting extreme situations such as prolonged periods of no solar and wind)?

27. How do control rooms address uncertainties in weather conditions that impact loads and renewable energy output and rate of change (ramps)? How can probabilistic forecasting techniques be better incorporated into real-time operations?

28. How can data be best utilized to ensure system operations include the ability to detect and mitigate a range of uncertain disturbances?

29. What quantities must be monitored, screened and validated to ensure reliable service provision from aggregated flexibility resources in distribution systems, supporting stable system operation?

30. What type of digital architecture is necessary to enable the variety of software required to operate a control room in real-time, near real-time and in auto pilot mode?

12

31. How can grid topology be flexibly adapted at various operating conditions?'

32. What is a suitable data architecture for DER monitoring & modelling? Once DER resources have been aggregated spatially and temporally, how should this information be provided to the control room? Can DER categories be developed that allow groupings based on their ensemble response to system level events? What is the appropriate data architecture required to monitor/predict and control DER in real-time?

33. What is the communication capability needed to support monitoring and control of DER? What is the suitability of existing communications infrastructure – in terms of reliability, latency, bandwidth, (cyber)security – relative to investing in a bespoke system? For DER control purposes, what 2-way communication protocols are necessary?

34. What are the relative merits of different control architectures for DER? What might an efficient distributed control architecture be for DER which: (1) makes use of appropriate device characterizations and real-time monitoring data; (2) accounts for practical constraints around devicelevel communication; and (3) accounts for heterogeneous subgroup controls of DER and various existing DSO/TSO control schemes?

35. What is the best way to integrate large data sets, streaming information, and historical system performance to create actionable operational insights?

36. How can the status (generation output, state of charge, etc.) of each key category of DER be monitored/estimated in real-time? What are appropriate DER categories and the appropriate spatial and temporal resolution to monitor DER effectively? What are the appropriate technical means of extension and the statement of the

Research Program	Description	Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	New tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black StartCreating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.		1
ServicesQuantifying the technical service requirements required of future power system to maintain the supply-demand balance reliably and at least cost.		7

Resource Adequacy Research Team

FIGURE 8

Scatter Plot of Size, Frequency, and Duration of Shortfall Events with Energy-limited Reliance on Energy Limited Resources

https://www.esig.energy/wp-content/uploads/2021/08/ESIG-Redefining-Resource-Adequacy-2021.pdf

Research Program	Description	Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	New tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	17
Planning	New planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.	15
Black Start	Creating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.	1
ServicesQuantifying the technical service requirements required of future power system to maintain the supply-demand balance reliably and at least cost.		7

Research Program Description		Number of Questions
Inverter Design	Development of capabilities, services, design methodologies and standards for IBRs.	10
Tools and Methods	Is and Methods New tools and methods required to ensure reliability, security, and stability in power systems.	
Control Room of the Future	<i>Future</i> Development of new technologies and approaches for enhanced real-time visibility and analysis in power system operator control rooms.	
PlanningNew planning metrics, methods, and tools to capture the characteristics and influence of a changing resource mix.		15
Black StartCreating new procedures for black starting and restoring a power system with high or 100% IBR penetrations.		1
Quantifying the technical service requirements required of futureServicespower system to maintain the supply-demand balance reliably and at least cost.		7

IBR Research Team

System Needs and Services for Systems with High IBR Penetration

Janusz Bialek University of Newcastle, UK	Jason MacDowell GE, USA
Thomas Bowen NREL, USA	Julia Matevosyan ERCOT, USA
Tim Green Imperial College London, UK	Nicholas Miller HickoryLedge, USA
Debbie Lew ESIG, USA	Mark O'Malley ESIG, Ireland
Yitong Li Imperial College London, UK	Deepak Ramasubramanian EPRI, USA
October 8th, 2021	

Titleist

Titleist

Figure 1: Schematic diagram of system needs and services with recognition of physical properties of grid, technology innovation and the regulatory and policy context.

<u>GPST-IBR-Research-Team-System-</u> <u>Services-and-Needs-for-High-IBR-</u> <u>Networks.pdf (globalpst.org)</u>

A Services Approach

Ongoing initiatives to meet stability challenges

NOA Stability Pathfinder Projects

Phase 1 – awarded contracts in Jan 2020 for 12.5 GW.s of inertia https://www.nationalgrideso.com/future-energy/projects/pathfinders/stability/Phase-1
Phase 2 – will buy inertia of 6 GW.s and SCL of 8.4 GVA in Scotland https://www.nationalgrideso.com/future-energy/projects/pathfinders/stability/Phase-2
Phase 3 – will buy inertia of 15 GW.s and SCL of 7.5 GVA in areas of England & Wale https://www.nationalgrideso.com/future-energy/projects/pathfinders/stability/Phase-3

Introducing GB Grid Code change for Grid Forming Technologies

•Grid Code Working Group GC0137 https://www.nationalgrideso.com/industry-information/codes/grid-code-old/modifications/gc0137-minimumspecification-required

Stability Market development Innovation project

•Aims is to understand if there is a need for a stability market

https://www.nationalgrideso.com/future-energy/projects/stability-market-design

Accelerated Loss of Mains Change Program (ALoMCP)

•Under which initiative the electricity distribution companies are updating settings for the RoCoF loss of mains protection relays from 0.125 to 1Hz/s, with a definite time delay of 500ms

•This will allow us to reduce spend on RoCoF related system constraints.

Stability Phase 2 requirement

The primary requirement for stability pathfinder Phase 2 is for regional short circuit level. However, we have included a requirement for national inertia as we value inertia contribution alongside SCL.

Location	Ref	Requirement (MVA)
Spittal	1	600
Blackhillock	2	1,300
Peterhead	3	1,300
Longannet area	4	600
Hunterston	5	1,200
Mark Hill/ Coylton area	6	400
Moffatt/ Elvanfoot area	7	1,800
Eccles area	8	1,200
Total		8,400

	Requirement (MVA.s)
Inertia	6,000
Total	6,000

The total requirement for SCL is for 8.4GVA across the 8 locations as above. As any solution at one location will have a positive knock-on impact on all the other 7 locations, the totality of volume procured across all sites is expected be less than 8.4GVA.

nationalgrid_{ESO}

G-PST Consortium Governance & Funding Model

Conclusions

- The Research Agenda is focussed and is a consensus between the six FSOs
- Great opportunity for the research community to get involved and have a real impact
- G-PST is an enabling and catalytic organisation
- G-PST has put out some initial "resources" please review
- Feedback welcome globalpst@nrel.gov

Resources

21st April 2021

COP26 Events

- <u>Unlocking Grids to Decarbonize</u> <u>Power Systems Globally</u>
- <u>Accelerating Power System</u>
 <u>Transformation through Technical</u>
 <u>Innovation</u>

Pillar 1 Resources

- <u>Key Research Needs</u>
- <u>Research Agenda</u> (IEEE PES Article)
- IBR Research Team
 - System Needs & Services (feedback)
 - Stability Tools Inventory (feedback)
- <u>Resource Adequacy</u>
 <u>Research Team</u>
 - <u>Report</u>
 - Policy Brief
- Additional Webinars

A Report of the Redefining Resource Adequacy Task Force **2021** ESIG

All these resources are accessible from: <u>https://globalpst.org/</u>