

Comparison of FFR to Synchronous Machines Sources ESIG, Denver October 2, 2018

Matthew Richwine GE Energy Consulting

Copyright General Electric International, Inc.

- 1. FFR Impact on System Performance
- 2. FFR Interplay with the Thermal Fleet
- 3. FFR Equivalency Approach

Oahu – A Tightly-Coupled System

FFR Grid Service Analysis

Study Focus: Understanding the impact of various parameters and sensitivity on FFR responses in decreasing inertia systems

Scenarios	1	2	3	4	5	6
% Inst. Penetration	17%	20%	30%	39%	50%	53%
System Inertia (MW-s)	5306	4791	4075	3223	2531	2243

Sensitivity Parameters:

- FFR Injection Levels (MW): 0, 25, 50, 100, 150, 175
- FFR Dynamic Model: Similar to a solar plant model, proportional frequency droop with 0.5 sec response time

FFR Impact on Nadir

- Increased injections of FFR improve nadir (positive slope trend)
- The response of the system is a function of:
 - a) Contingency Size (fixed)
 - b) System Inertia (varied)
 - c) Speed of FFR (fixed)
 - d) Size of FFR (varied)
- The plot can be viewed as cost-benefit graph for FFR, where nadir is the benefit and FFR injection is related to system cost

*FFR Response with Baseline Controls

FFR Impact on RoCoF

- FFR evaluated has little impact on RoCoF
- RoCoF is influenced by system inertia and contingency size

UFLS and FFR Coordination

- FFR reduces the amount of under frequency load shedding required in a system
- Consistent with improving nadir

System Response for Different Levels of System Inertia

FFR Equivalency Approach

Analysis Method:

- Remove a synchronous machine (replace MW generation with renewable generation)
- Increase the FFR MW response until the nadir for the same generation-loss event returns to the previous value

FFR Equivalency Findings

• FFR "equivalency" can be viewed as the amount of FFR MW injection per thermal unit MW

Higher FFR Eq. → FFR More Impactful

- FFR equivalency ratio assumes an average unit inertia of 4.3 (based on Oahu)
- The "Time to System Collapse" is the time for system frequency to reach 57Hz for a given RoCoF

 $T_{collapse} = 3Hz/RoCoF$

Fastest stable FFR detection & response time

At some point... FFR cannot respond fast enough AND be stable to be effective by itself

FFR Study Conclusions

FFR Systems Impact

- FFR improves system response to loss of generation events but there are diminishing returns
- FFR reduces UFLS action on system during loss of generation events
- FFR has little impact on RoCoF

FFR Equivalency

- FFR is generally more effective than synchronous machines, MW-for-MW
- For extremely low inertia systems, FFR (and UFLS) will be less effective (and ultimately ineffective) when responding autonomously by detecting frequency changes

"Grid Forming" control technologies can help overcome this limitation for extremely fast systems

Thank You

Matthew Richwine GE Energy Consulting matthew.richwine@ge.com