Imperial College London

Flexibility from Thermal/Electric Energy System Integration: UK studies

D. Pudjianto, G.Strbac

Imperial College London

2019 Spring Technical Workshop, Albuquerque, New Mexico, 19-21 March 2019

Content

- Heat decarbonisation challenges
- How important is the integration of heat, gas and electricity sectors?
- Benefits of integrating design and operation of heat and electricity sectors
- Performances of different heat decarbonisation pathways
- Impact of flexibility on electricity generation portfolio
- Role of different firm LCG technologies for deep decarbonisation
- Cross-energy system flexibility to maximise the use of RES
- Conclusions

Imperial College

Heat decarbonisation challenges

- Domestic electric (nontransport/heat)
- Non-domestic electric (nontransport/heat)
- Domestic space heating
- Non-domestic space heating
- Domestic water heating
- Other heating demand
- Transport

Which strategy?

- Hydrogen
 - Hydrogen boilers
- Electrification
 - Heat pumps
 - Resistive heating
- Hybrid
 - Hybrid heat pumps

Objective: provide fundamental evidence to support the development of policies for decarbonising heating and the electricity system in the UK

https://www.theccc.org.uk/publication/analysis-of-alternative-uk-heat-decarbonisation-pathways/

- Electric:
 - Non-heat/transport: 367 TWh
 - Transport: 111 TWh
- Heat: 633 TWh

..include 13% household in district heating, and 18% off-gas grid homes

3

Imperial College

Modelling approach

Imperial College London

Benefits of integrating design and operation of heat and electricity sectors

Imperial College

London

delivers larger cost savings in the electricity system

Annual system cost of heat decarbonisation pathways

Imperial College London

6

Optimal generation portfolio in different London heat decarbonisation pathways 7

A stricter carbon target drives the need for firm low-carbon generation and reduces the case for variable low-carbon (wind, PV).

*Current (2018) installed capacity of UK wind: 19GW. By 2050, at least it needs 74GW.

Imperial College London

Optimal generation mixes

Although expensive, nuclear may be needed to meet a very demanding carbon target.

Integrated versus silo decarbonization

Paper: X. Zhang, G. Strbac, N. Shah, F. Teng, D. Pudjianto," Whole-System Assessment of the Benefits of Integrated Electricity and Heat System," accepted for publication, Sep. 2019

9

Imperial College

Impact of flexibility onImperial College
Londonelectricity generation portfolio10

Low flexibility requires firm LCG (at a higher cost)

System benefits of HHP in a system with different level of flexibility

Imperial College

SIC vs. VRES penetration and flexibility

Imperial College London

Role of firm low-carbon generation in deep decarbonisation

Deep decarbonisation requires firm low-carbon capacity (nuclear, H2-fired gen) [less case for RES and other firm capacities] RES can substitute nuclear in a flexible system with large storage and H2-fired generation

Alternatively, H_2 based power generation can be used with H_2 import. This reduces the need for RES in the UK.

Imperial College

Slide 13

London

Note:

- In 0 Mt, CCGT and OCGT will run on biogas (carbon-neutral)

- Source: G.Strbac (2018) Analysis of Alternative UK Heat decarbonisation Pathways. A report for Committee on Climate Change.

Cross-energy system flexibility is required to maximise the use of RES

Imperial College London

Slide 14

Elec [0] no nuclear, high RES

IWL EV SA HP RH P2G Storage Export

Hydrogen storage requirement in different scenarios

Imperial College London

Thermal storage or electricity storage ?

Number of household: 34.3 M Thermal storage: 1.7 kWth/household **Imperial College**

Cost changes in core decarbonisation pathways under different scenarios

Key findings

Imperial College London

- Whole-system approach for integrating heat / cooling, gas, electricity, transport infrastructure is the key to minimise the overall cost of decarbonisation -
 - Need for high time and space resolution of multi-vector modelling
- Renewable sources based decarbonisation role of long term / hydrogen storage
- Significant need for demonstration of innovative solutions
- Need for appropriate regulatory, market & business models