

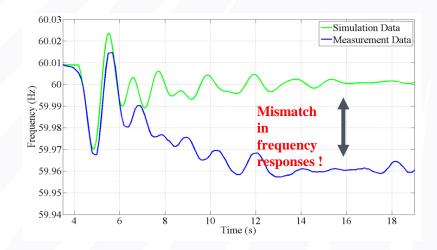
Frequency Response Assessment and Improvement of Three Major North American Interconnections due to High Penetrations of Photovoltaic Generation

Yilu Liu^{1,2}, Shutang You², Jin Tan³, Maozhong Gong⁴, Yingchen Zhang³, Yong Liu², Melanie Bennett², Abigail Till², Alfonso Tarditi¹ ¹Oak Ridge National Laboratory, ⁴GE Global Research ²University of Tennessee, ³National Renewable Energy Lab

energy.gov/solar-office

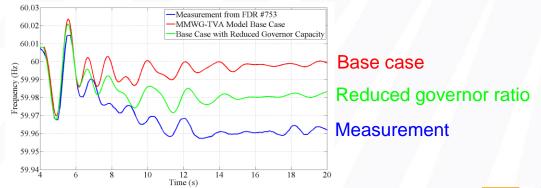
Overview

- High PV penetration scenarios for U.S. interconnection grids
- Impact of high PV at both the interconnection and balancing authority levels
- Mitigation strategies for low system inertia and reduced frequency response
- Additional studies for high PV interconnection grids

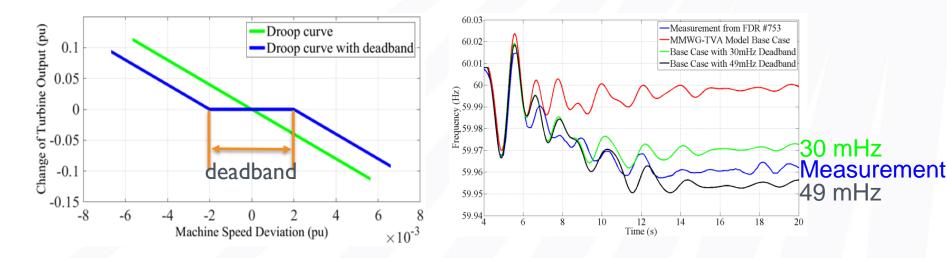


- Develop high PV penetration scenarios based on <u>the</u> <u>measurement-validated interconnection</u> models and projected PV distribution
- Simulate the impact of high PV at <u>both the interconnection</u> (>80%) and balancing area levels (>=100%)
- <u>Production-grade solar inverter</u> with inertia control function for frequency response improvement

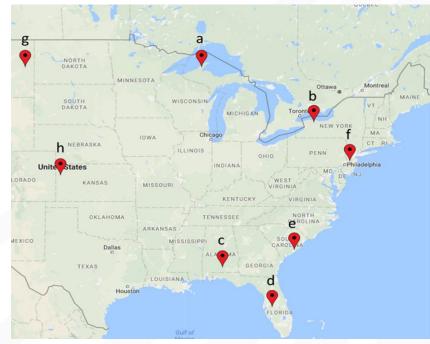
Base Model Validation Using Measurements - Introduction


- Why is the simulated EI primary frequency response significantly higher than measured values?
- Sensitivity study results.
 - Governor ratio/spinning reserve (major)
 - Governor deadband (major)
 - Governor droop
 - Load composite
 - The outer loop control
 - Inertia
 - Frequency dependent network

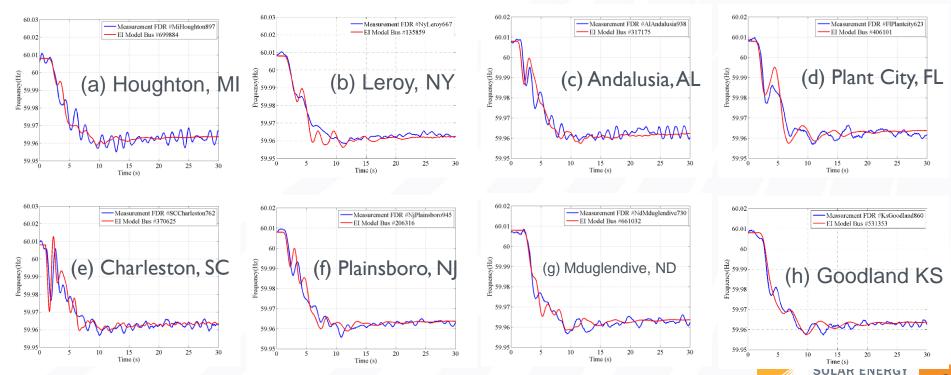
Base Model Validation Using Measurements – Governor Ratio


- Governor ratio is the fraction of generation capacity that is providing governor response.
- The ratio is currently around 80% in the EI MMWG models. Based on FNET/GridEye monitoring data, this ratio for EI is likely lower than 30% to match measurement.

Base Model Validation Using Measurements – Governor Deadband


- Governor deadband is adopted to avoid excessive turbine control actions within normal frequency variation range.
- Not typically modeled in EI MMWG model.

6


Base Model Validation Using Measurements – Results

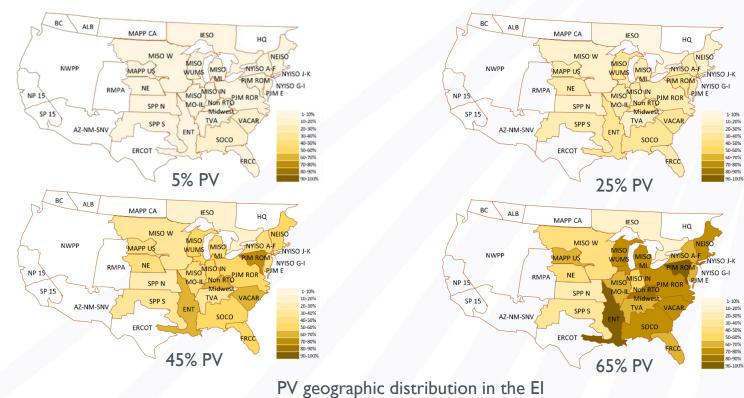
Measurement locations at El edges

Base Model Validation Using Measurements – Validation Accuracy at Grid Edges

energy.gov/solar-office

TECHNOLOGIES OFFICE

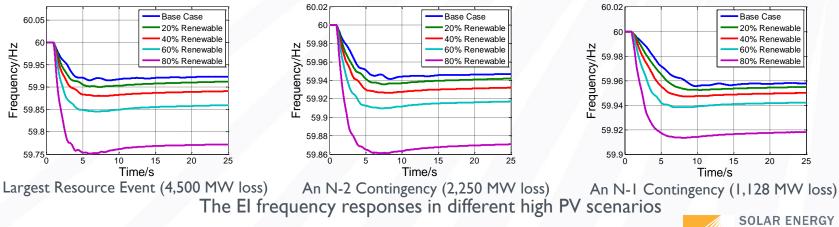
U.S. Department Of Energy


High PV Scenario Generation Mix Determination

- The generation mix of simulation scenario
- 18 cases total (for EI, WECC and ERCOT)

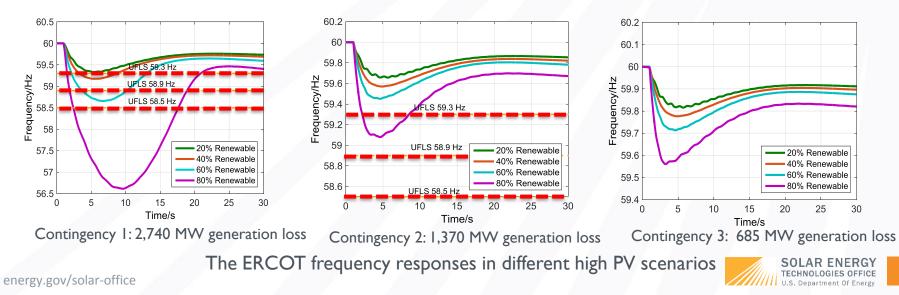
Scenario	Instantaneous PV Penetration Level	Instantaneous Wind Penetration Level	Total Instantaneous Renewable Penetration Level
Interconnection Level Scenario 1	5%	15%	20%
Interconnection Level Scenario 2	25%	15%	40%
Interconnection Level Scenario 3	45%	15%	60%
Interconnection Level Scenario 4	65%	15%	80%
Regional Scenario	100%	0%	100%

PV Instantaneous Penetration Rate Distribution in the El



Task 2.1: El Frequency Response under High PV Penetration

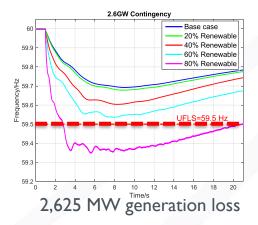
Test resource contingencies in the El

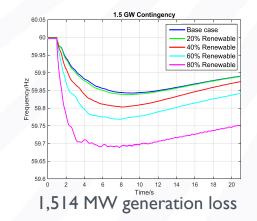

Contingency	Description	Unit Location	Generation loss (MW)
1	The largest resource event in last 10 years	Five units in south Indiana (August 4, 2007 Disturbance)	4,500
2	An N-2 contingency	Two Braidwood Nuclear Units, Illinois	2,250
3	An N-1 contingency	One Browns Ferry Nuclear Unit, Alabama	1,128

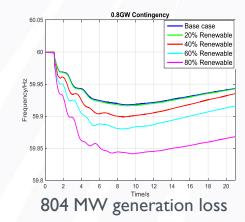
Task 2.1: ERCOT frequency response under high PV penetration

Test resource contingencies in ERCOT

Contingency	Description	Unit Location	Gen. loss (MW)
1	The largest N-2 contingency	Two South Texas Nuclear Units	2,740
2	An N-2 contingency	Two Martin Lake Units	1,370
3	An N-1 contingency	One Martin Lake Unit	685

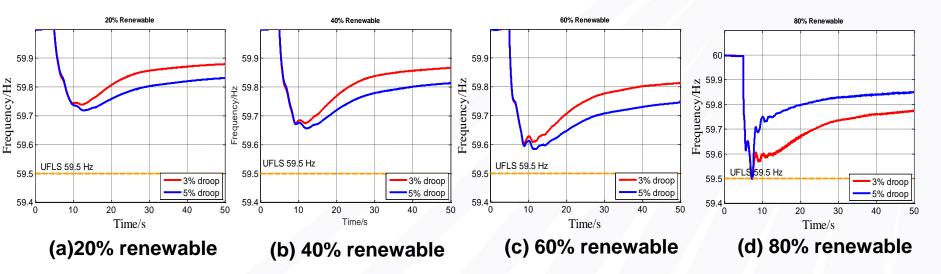



¹²


Task 2.1: WECC frequency response under high PV penetration

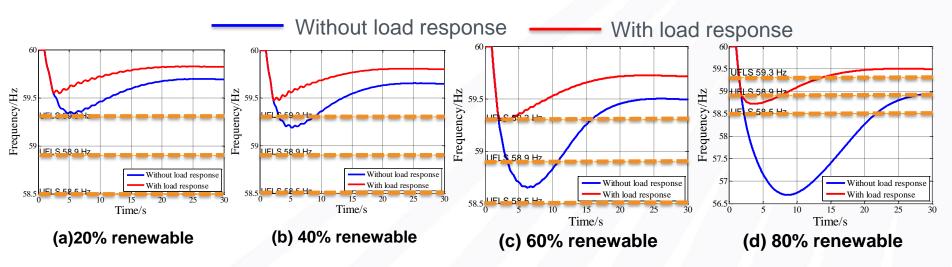
Test Contingencies in the WECC

Contingency #	Description	Unit Location	Gen. loss (MW)
1	The largest N-2 contingency	Loss of the two largest generating units in the Palo Verde nuclear facility.	2,625
2	An N-2 contingency	Loss of the two units in the Colstrip coal power plant	1,514
3	An N-1 contingency	Loss of one unit in the Comanche generating station	804



The WECC frequency responses in different high PV scenarios

energy.gov/solar-office


Subtask: Using existing resources to improve frequency response in WECC – changing governor droop

- A 3% governor droop can significantly improve the WECC frequency nadir and settling frequency.
- Because of the faster governor response to the generation loss contingency.

Using existing resources to improve frequency response in ERCOT– FFR provided by load

ERCOT frequency responses with fast load response (2.75 GW generation loss, UFLS disabled)

- Frequency nadir and settling frequency increased significantly with FFR.
- FFR provided by load response is highly efficient in supporting frequency response when the governor response of synchronous generators is insufficient.

Implement the proposed artificial inertia/governor/AGC schemes on GE's utility-level PV inverter

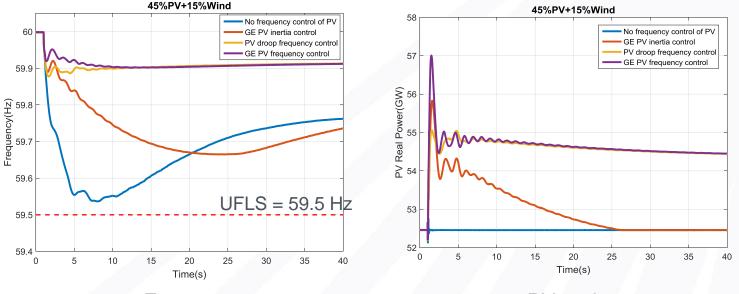
- Solar inertia evaluation system:
 - The inverter controller: MarkVIe based actual inverter control
 - The inverter and the grid: RTDS

energy.gov/solar-office

GE Brilliance Solar Inverter HIL system

Test the PV inverter with artificial inertia/governor/AGC functions in CURENT Hardware Testbed.

- CURENT HTB Introduction
 - CURENT HTB consists of modular and reprogrammable three-phase converters and a reconfigurable structure to emulate large scale power systems.



CURENT Hardware Testbed

****&**|**∓ Cluster 1 Cluster n+ Cluster m Cluster n CTs. PTs FDR, PM Monitoring Control CAN Bus **Visualization and Control Room** Architecture of the CURENT Hardware Testbed

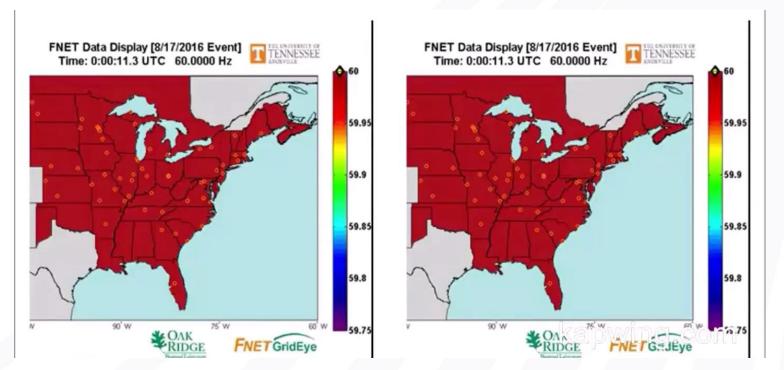
Hardware Room

PV inverter frequency control in the WECC high PV models

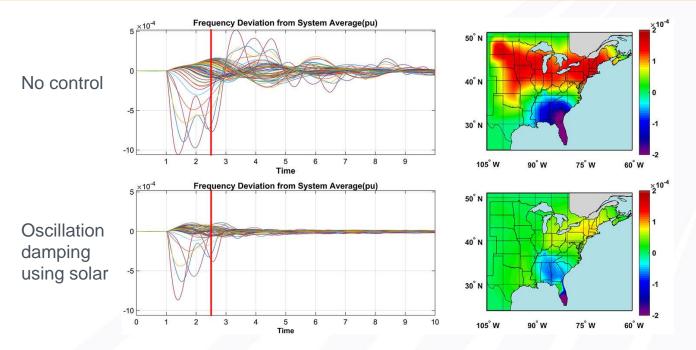
Frequency

PV real power

WECC frequency response and PV real power with inverter frequency control (45% PV + 15% WT)


Summary of additional studies

- Impact of high PV penetration on electromechanical wave propagation
- Impact of high PV penetration on FRCC-EI out-of-step stability
- Impact of high PV penetration on EI inter-area oscillations
- Inter-area oscillation damping using PV
- Impact of high PV penetration on transient stability
- Impact of high PV penetration on ERCOT voltage stability
- PV synthetic inertia location sensitivity study on the WECC system


Additional Studies: Impact of High PV Penetration on Electromechanical Wave Propagation

Comparison of wave propagation between BAU and high PV (video link)

Preliminary results on oscillation damping using solar


El system inter-area oscillation damping using wide-area solar PV PSS control.

[1]. Liu, Y., Zhu, L., Zhan, L., Gracia, J.R., King, T.J. and Liu, Y., 2016. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping. International Journal of Energy Research, 40(3), pp.353-361.
[2]. Liu, Y., You, S. and Liu, Y., 2017. Study of wind and PV frequency control in US power grids—EI and TI case studies. IEEE Power and Energy Technology Systems Journal, 4(3), pp.65-73.

U.S. Department Of Energy

Additional Study: Impact of high PV penetration on transient stability (Lead: ORNL. Participant: UTK)

- <u>Non-linear correlation between</u> <u>CCT and the renewable</u> <u>penetration rate</u>
 - The stability slightly decreases when renewable increases up to 45% PV penetration and 15% wind penetration.
 - By the time the PV penetration reaches 65% with 15% wind, the stability decreases considerably.

CCT vs. renewable penetration

Publications

Journal:

- [J1] S. You, Y. Liu, J. Tan, Y. Liu. Y. Zhang. "Improve Primary Frequency Response Without Curtailing Solar Output in High Photovoltaic Interconnections Case Studies in the U.S." *Sustainable Energy, IEEE Transactions on,* 2018. (Published).
- [J2] Y. Liu, S. You, J. Tan, Y. Zhang, Y. Liu, "Frequency Response Assessment and Enhancement of the U.S. Interconnections towards Extra-High Photovoltaic Generation Penetrations an Industry Perspective," Power Systems, *IEEE Transactions on*, . (Published).
- [J3] Y. Liu, S. You, X. Zhang, S. Hadley, and Y. Liu, "Study of Advanced Renewable Generation Control in the U.S. Power Grid ERCOT and TI Case Studies," *IEEE Power and Energy Technology Systems Journal*, (Published)
- [J4] S. You, Y. Liu, G. Kou, X. Zhang, S. Hadley, and Y. Liu, "Non-Invasive Identification of Inertia Distribution Change in High Renewable Systems Using Distribution Level PMU," *Power Systems, IEEE Transactions on,* (Published).
- [J5] S. You, G. Kou, Y. Liu, M. J. Till, Y. Cui, and Y. Liu, "The Impact of High Renewable Penetration on the Inter-Area Oscillation of the U.S. Eastern Interconnection (EI)," *IEEE Access*, 2017 (Published)

Conference:

- [C1] S. You, Y. Liu, and Y. Liu, "U.S. Eastern Interconnection (ERCOT) Electromechanical Wave Propagation and the Impact of High PV Penetration on Its Speed, "2018 IEEE PES T&D Conférence & Exposition, 2018. (Published)
- [C2] S. You, Y. Liu, Y. Liu, A. Till, J. Tan, Y. Zhang, and M. Gong. Energy Storage for Frequency Control in High Photovoltaic Power Grids. 2018 North American Power Symposium. (Accepted)
- [C3]J. Tan, Y. Zhang, S. S. Veda, T. Elgindy, and Y. Liu, "Developing High PV Penetration Cases for Frequency Response study of U.S. Western Interconnection," in *The 9th Annual IEEE Green Technologies Conference*, Denver, Colorado, March 2017, pp. 1-5. (Published)
- [C4] J. Tan, Y. Zhang, S. You, Y. Liu, Y. Liu. Frequency Response Study of U.S. Western Interconnection under Extra-High Photovoltaic Generation Penetrations. IEEE PES General Meeting. 2018.(Accepted)
- [C5]S. You, X. Zhang, Y. Liu, Y. Liu, and S. W. Hadley, "Impact of High PV Penetration on U.S. Eastern Interconnection Frequency Response," in *IEEE Power and Energy Society General Meeting*, 2017. (Published)
- [C6] J. Till, S. You, Y. Liu, P. Du. Impact of High PV Penetration on Voltage Stability. MEDPOWR 2018 conference (accepted)

Acknowledgements

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

This work is funded in whole by the U.S. Department of Energy Solar Energy Technologies Office, under Award Number 30844.

This work also made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

energy.gov/solar-office