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State of the Industry

* The US produces 4.1 trillion Kilowatt-hours of
electricity per year

« Distributed by 500 Power Companies

» 160,000 Miles of High Voltage transmission
lines in the U.S. known as "the grid.”

« Challenge is getting it to cities, factories,
military bases in the right amounts
when needed

» Power utilities operate transmission lines
based on static ratings, which set a control Fac
conservative limit on the amount of current
the lines can safely carry without overheating

D Without accurately measuring the
environmental conditions and their effects,
lines can be critically underutilized.

D Without conservative and accurate forecasts of
capacity utilities can NOT plan and effectively
use the capacity.




Weather Based D I_\Rvérppr@aeh;——% |daho National Laboratory

Computational Fluid Dynamics Informed Weather Based Dynamic Line Rating

Control Facility Weather Station
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Available Capacity Improvement with DLR... but
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.how can it be made usable v m'doho Nafonal Lboraory s

DLR Forecasting Decision Guidance

Time scales

1. Instantaneous 5. Maintenance, Power Marketing
2. Short-term: Thermal Inertia 6. Maintenance, Marketing, Construction
3. Short-term look ahead 7. Construction, Refurbishment, Voltage Upgrades
4. Dalily Peak Loading, Generation Dispatch
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HRR% Imdel Grid Points and INL Weather Station Locations (Zoomed)
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NOAA HRRR Grid and INL Collaboration Early Results

Distribution of HRRR 15-Minute Wind Directions
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Needs for Dynamic Line Rating

» Concurrent Cooling with Wind Generation is the easy part — still need
forecast for possibility .

* Development of the "True" Dynamic Line Rating requires Forecasting.

» Uncertainty of forecasts must be understood such that we miss on the
conservative side of any tolerance but advance the rating.

» Accuracy from a DLR application perspective means forecasts are project
accurate measure of line capacity or line temperature given the thermal time
constant--individual errors in wind speed forecast minute to minute isn’t the
most important aspect)

 Different expectations/needs in different time frames.

* <60 minutes out—accuracy with high confidence to assess emergency
(contingency of a line outage) or opportunistic (take advantage of a market
condition.

» Hourly out through 24 hours out — conservatively assess the capacity similar
to load and generation markets/planning requires relatively lower accuracy
but good assessment of what the conservative end of the forecast

* Beyond 24 hours —less temporal fidelity expected more — need more
experience with forecast data applied to the application to understand the
limits = Collaboration with NOAA
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WIND INTEGRATION R&D
Concurrent Cooling, Dynamic Line Rating

Jake P. Gentle — jake.gentle@inl.gov




'daho National Lo

Back up Slides



PI‘OjeCt Overview \ \' %Idoho Nationdl [oborufory‘

Operational and Strategic Implementation of Dynamic Line
Rating for Optimized Wind Energy Generation Integration

“A “Cool” Way to (1) Increase the Utilization of Existing
Transmission and Distribution Infrastructure - DLR, and (2) the
Optimization of New Infrastructure Developments — P&R Toolkit”

Affordable and effective implementation of real-time weather and
forecast based dynamic line rating of overhead transmission lines by
mitigating transmission congestion and optimizing the use of electricity
infrastructure for the integration of wind energy to enhance the nation’s
energy portfolio.

The Challenge:

Provide science based methodologies and solutions that are readily
adopted and usable by a conservative, regulated industry

Requirements:

Provide industry with a low cost, robust solution set, and enabling
human operators to make informed decisions and take appropriate
actions without being overwhelmed with data
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Helping Operators Implement Dynamic Line Rating

Defining and
Conveying
transmission
line current and
temperature
limits
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Technology Value Chain

Software Solution Corfhfg;l“f’\clﬁﬁtlon

Grid
Operator

“ solution Frovider ss
Sensors Transmission

System
System Integration * Plznners

FERC | NERC |
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Time Scales In Transmission Lines

Time Scale Concept

Fast time scale

Electrical
Dynamics

O

Thermal

Dynamics \

. . Slow time scale
Transmission

Line

IEEE Std. 738 does not
address the slow and fast
inherent dynamics

Perturbations in a
transmission line are not
taken into account

Computationally challenging
system!
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Time Domain Modeling
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Instantaneous caIc_uIations of
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Real-time calculations —
Decision Making —
SCADA/EMS

Import MATLAB® model
library into GLASS

Controller Design - Mitigating
system perturbations
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Example: Flow Gate use of TDLR with Human

Factors Engaged
Oklahoma Gas and Electric use of line ratings—

currently static

Track N-1 Contingency Line current versus ratings
Simple Table of Lines and the percent of rating under N-1 line

Flowgate Values

amperage 1 Line1l 13 Line 13
Color coding on alarm setting 3 Lnes 15 Line 15
Would prefer no additional fields s i

7 Line7
20 Line 20

Propose possible designs: i e

Engage with HF interviews 1 L B ez
Highest value if added information is not “just more” information
to process immediately but something that may even give more

time to evaluate — Human Performance Principle

Time to maximum conductor temp under contingency condition
IS one concept in consideration

Next step provide alternatives including our biases preferred
candidate and perform an evaluation with
operators/stakeholders



Partners and Collaborators

Boise State University — Boise, ID
Graphical processing units CFD research (GIN3D)
Masters student, DLR standard development

Durham University — Durham, UK
Collaborator & methodology validation/comparison
Joint publications

Idaho Power Company - Boise, ID
Test area (~500 line miles)
Equipment funding and installation
Engineering support

Idaho State University — Pocatello, ID
Graduate intern (1.5 years) — full-time position hire
2010 to 2012 Senior Design Projects (8 students)
2013 to 2015 PhD Candidate - Dissertation

Montana Tech — Butte, MT
Undergraduate student intern (4 years)
Graduate student intern (2 years)

Genscape (Promethean Devices) — Boston, MA
Field validation subcontract (3 months)
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University of ldaho — Moscow, ID
» PhD student intern supporting multiple publications
* Undergraduate student intern (3 years)

WindSim AS — Tonsberg, Norway
« Computational fluid dynamics (CFD) software
collaborator and development partner

AESO - Alberta, Canada

AltaLink — Alberta, Canada

Nexans, The Valley Group — USA
Southwire Company - Carrollton, GA
Lindsey Manufacturing — Azuza, CA
StormGeo — Houston, TX

TechFlow — San Diego, CA

OSlsoft — San Leandro, CA

Bonneville Power Administration — Portland, OR
Southwest Power Pool — Little Rock, AR
Stantec — Portland, OR

Interactions w/ Industry & Academia — 10+ Non-Disclosure Agreements, 1 SPP Agreement Executed,
1 CRADA Project Executed, 1 CRADA Project Initiated, Over $1M invested by industry/academia partners
over a 3-year period.



