

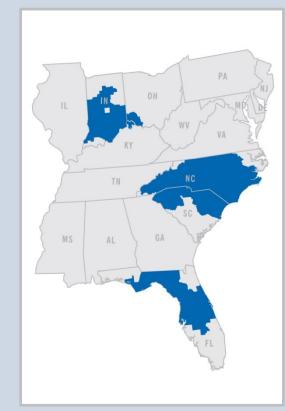
UVIG Forecasting Workshop, June 20-22, 2017 Nick Keener, Director of Meteorology

Regulated Utilities

Commercial Businesses

Commercial Power

Duke Energy Renewables

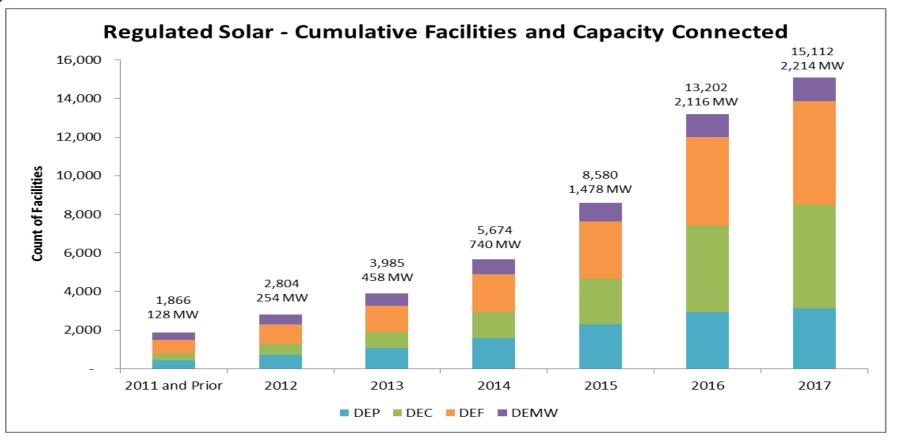

- Regulated generation, electric and gas transmission distribution systems
- Duke Energy Carolinas
- Duke Energy Progress
- Duke Energy Indiana
- Duke Energy Ohio/Kentucky
- Duke Energy Florida

Regulated Utilities (percent owned capacity)

38%
38%
17%
7%

- Largest business segment and primary source of earnings growth
- 6 states: North Carolina, South Carolina, Florida, Indiana, Ohio, Kentucky
- 95,000 square miles of service area
- 49,600 MW of generation capacity
- 7.5 million retail electric customers in 6 States
- Renewable and energy efficiency programs
- Nearly 30,000 Employees

Duke Energy Renewables


- Approximately 3,190 MW of wind and solar projects operating in 12 states
 - Including 2,300 MW of Wind
 - Over 850 MW of Solar
 - 40 MW of Battery Storage
- Since 2007, invested more than \$3 billion to grow wind and solar business

DUKE Energy Solar, Wind and Storage Portfolio Nationally

Solar Expanding Rapidly In Duke's Regulated Jurisdictions

DUKE A few reasons why we need Meteorologists at Duke Energy?

- Weather is the primary driver of electricity demand
 - Hotter temps in the summer = Greater A/C demand thus higher loads
 - Colder temps in the winter = Greater heating demand thus higher loads
- Weather can affect electricity supply including renewable energy sources
 - Hydro generation, wind generation and solar generation
- Weather affects electricity reliability
 - Storms lead to power outages
 - A proactive response requires good pre-storm forecasts on impacts and resource needs
- Regulatory requirements for nuclear power plants
 - Governance of the meteorological monitoring programs for 6 nuclear power plants
 - Data QA/QC
 - Supporting emergency response organization
 - Dispersion modeling

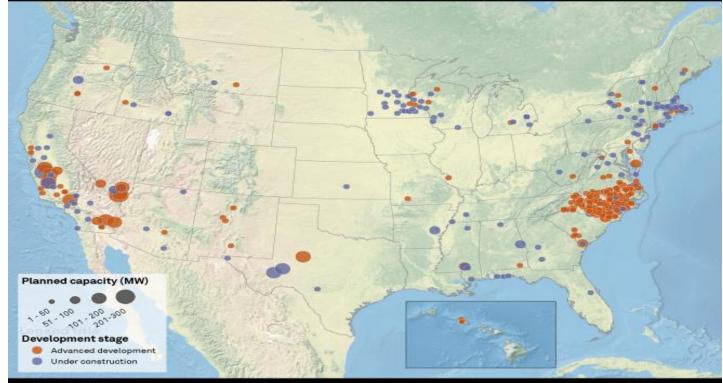
Duke Energy Meteorology Group

Staff of 6 meteorologists

- 3 with masters degrees
- 4 Certified Consulting Meteorologists
- Nearly 100 years of combined utility experience at Duke Energy
- A "shared resource"
 - Support regulated, non-regulated and commercial operations

DUKE ENERGY. Meteorology Group Functional Support

- Meteorology support for Portfolio Optimization for Regulated and Commercial Trading and Dispatch
- Storm support/weather support for the Enterprise including T&D, Call Centers, Nuclear, and Commercial Operations
- Meteorological support for Nuclear Stations
- Meteorological support for Hydro Operations
- Meteorological support for both regulated and commercial Wind and Solar


Daily to Seasonal Operational Uses of Weather Forecasts/Data

- Generation System Dispatch/Load Forecasting
- Precipitation Forecast for Daily Hydro Planning/Dispatch
- Renewables Solar/Wind
- Storm Prediction Resource modeling for storm impacts
- Extreme weather impacts for generation planning/maintenance and grid operations
- Transmission Line ratings
- Jurisdictional requirements for Non-Pay disconnects
- High bill analysis
- Earnings

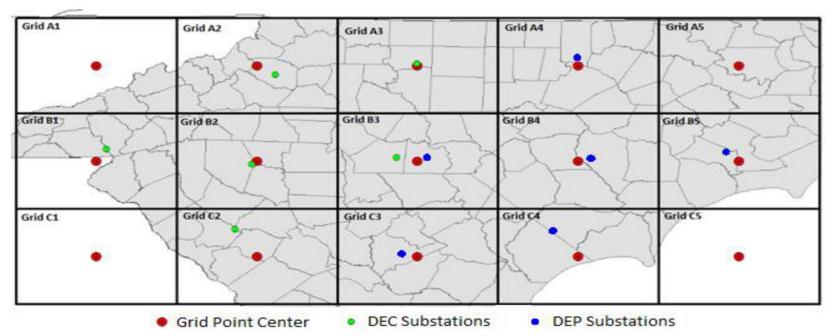
- Monthly and seasonal forecasts for system planning/operations
- Thermal modeling

North Carolina No. 2 in The Nation for Solar

US planned utility-scale solar projects in advanced development or under construction

As of May 17, 2017. Source: S&P Global Market Intelligence Map credit: Alip Artates

• The solar forecast ensemble approaches uses a weighted average of the numerical weather models.


Model	Model (long)	Resolution	Model Update Rate	Output Interval	Time Horizon	Ensemble Weighting <= 18 hours	>18 Hours
GFS	Global Forecasting System	13 km	6 hours	3 hours & 6 hours	168 hours	35%	55%
NAM	North American Model	12 km	6 hours	3 hours	84 hours	25%	45%
HRRR	High- Resolution Rapid Refresh	3 km	1 hour	1 hour	18 hours	40%	N/A
ECMWF	European Model	18 km	12 hours	6 hours	240 hours	Coming soon	Coming soon

- Single-model forecast approach uses:
 - HRRR out to 15 hours
 - NAM to 84 hours
 - GFS to 168 hours
 - Based on a spatially weighted average at a point and 4 surrounding points
- Ensemble forecast approach:
 - Utilizes the NCEP operational models
 - (and eventually the ECMWF)
 - Allows for the development of a forecast confidence interval based both on model spread and average error

Sensor locations within 80 by 80 km Grid boxes

