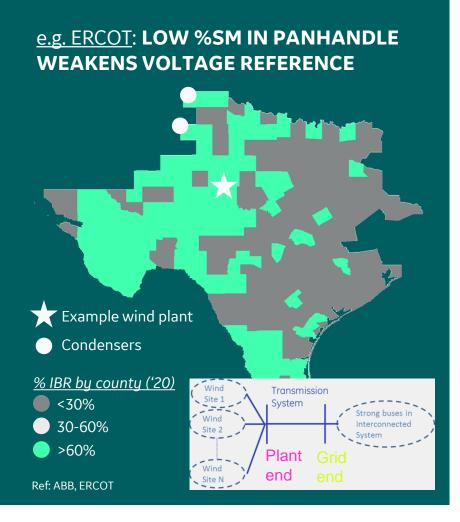
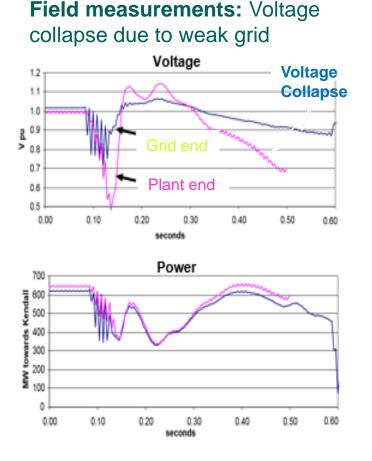


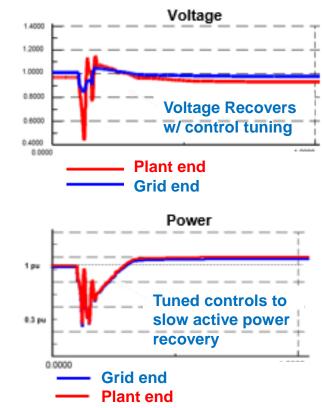
# **OSCILLATIONS IN POWER SYSTEMS**

JASON MACDOWELL


MARCH 28, 2024


© 2024 GE Vernova and/or its affiliates. All rights reserved




## Dynamic voltage stability: Voltage can swing and collapse after a weak grid disturbance

e.g. Onshore wind plant in West Texas



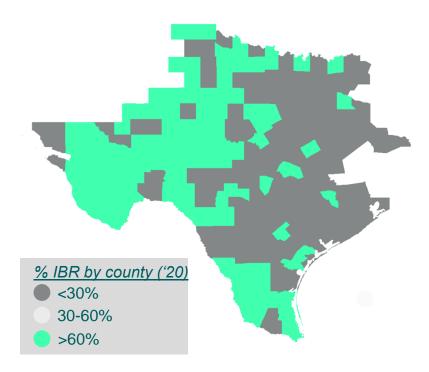


**Simulated mitigation:** Tuning controls to avoid voltage collapse



- Extremely weak application cause risk of voltage collapse
- Stable at fault clearing, collapse during power pickup before improvements
- Time frame of collapse is dictated by active power recovery




#### Topics

## **Oscillations due to...**

✓ Instabilities related to weak grids
 ✓ Sub-synchronous oscillations
 ✓ Control interactions
 ✓ Small and large signal instabilities

## Weak grid: High IBR / low SM penetrations weaken grid reference voltage

#### e.g. ERCOT: LOW %SM IN PANHANDLE WEAKENS VOLTAGE REFERENCE



#### **IBR CONTROLS CHALLENGED IN WEAK GRIDS**

**Voltage collapse:** Grid voltage more sensitive to power flow changes

**Unwanted control interactions** across multiple plants (e.g. tripping)

**Converter control instability** with no external influence (e.g. small signal instability)

**Converter control mode cycling ...** introducing severe transients into the system

#### **TODAY'S MITIGATIONS**

- Limit new IBR projects ... esp w/ inexperienced grid operators
- 2. Tune grid following controls to avoid unwanted controls confusion.
- 3. Synchronous condensers: New units or fossil units can be retrofitted.

#### Ref: ABB, ERCOT

4

**GE VERNOVA** 

Strong

Weak

<3

SCR

"Short circuit ratio" SCR A measure of how much

fault to keep voltage stable

current is injected during a

## **Stability Issues in Weak Grids**

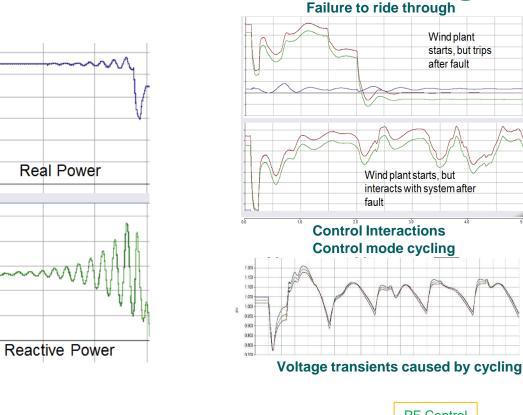
#### Failure to ride through disturbances

✓ Weak systems make ride-through more difficult, especially following a network disturbance, leading to wider system issues, such as underfrequency or loss of voltage support. Phase-Lock-Loop (PLL) stability.

#### **Converter control interactions**

 $\checkmark$  The weaker the interconnection, the more likely controls will be to influence each other and interact negatively with each other

#### **Converter control instability**


✓ If the network is weak enough, controls may enter unstable region with no external influence needed (small signal instability)

#### **Cycling between converter control modes**

✓ If system is weak, various turbine control modes may cycle multiple times as turbine attempts recovery, introducing severe transients into the system

#### Steady-State Voltage Collapse

✓ Voltage collapses more sensitively as real & reactive power flows through weak grid (nonsource dependent)





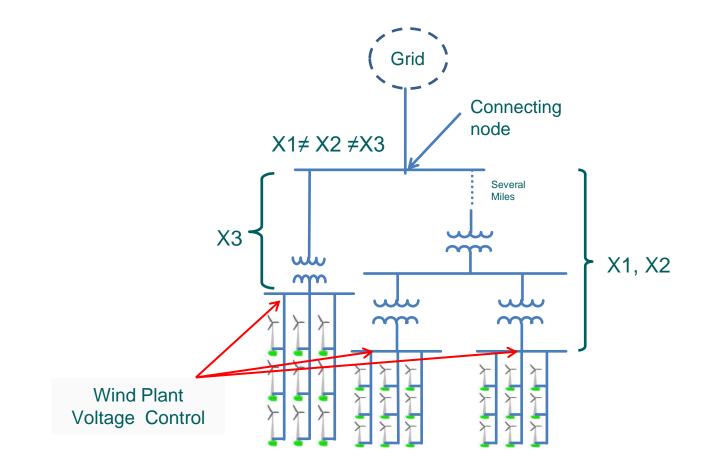
Voltage

Grid

**GE VERNOVA** 

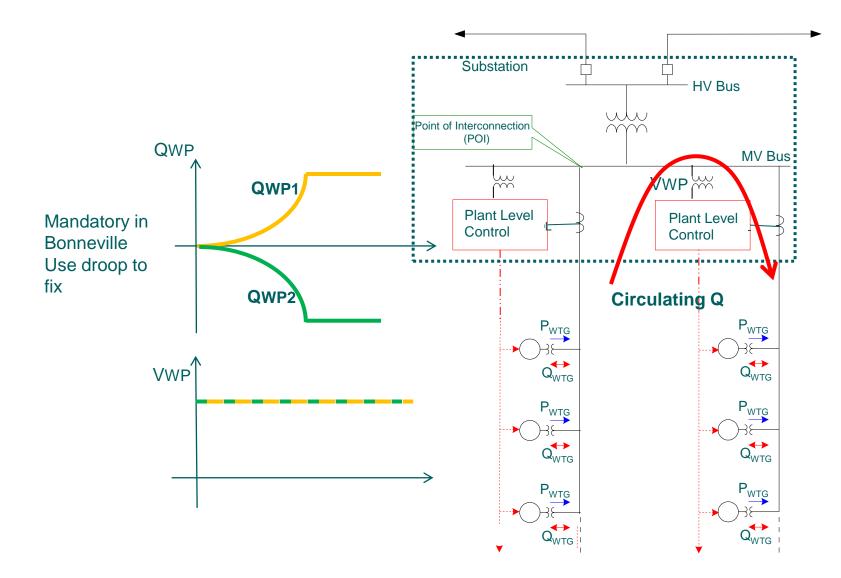
Wind plant starts, but trips

after fault


**GE VERNOVA** (*3*E)

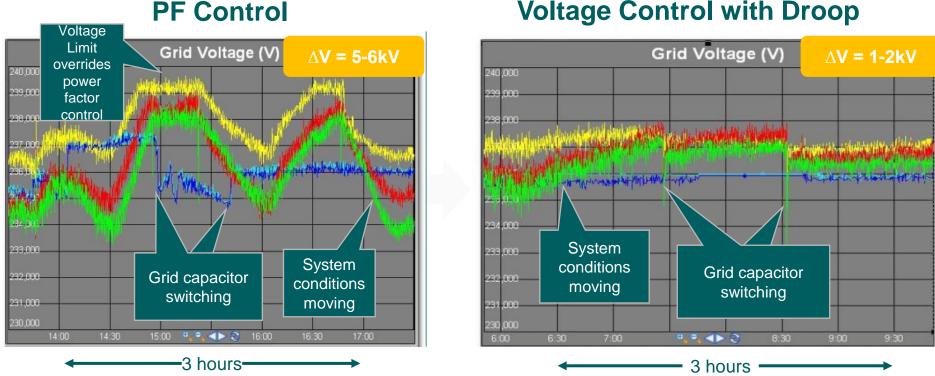
Controls stability: IBRs have multiple control layers & control modes that depend on voltage reference ... weak reference  $\rightarrow$  interaction

|                                                                                                           |                                                                                                                                                    | RESPONSE<br>TIME                 | POWER<br>FLOW                                               | DYNAMICS     | TRANSIENTS   |                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Different<br>modes ensure<br>turbine safety<br>Different<br>modes provide<br>grid reliability<br>services |                                                                                                                                                    | LAYERS OF WIND PLANT CONTROL     |                                                             |              |              |                                                                                                                                                                                |  |
|                                                                                                           | 1. Turbine level                                                                                                                                   | 1-10 sec                         | Only models a<br>static output vs.<br>a change in<br>output | ✓            | ✓            | <ul> <li>converters switch<br/>control modes<br/>based on grid<br/>voltage and<br/>frequency</li> <li>In weak grids, large<br/>voltage fluctuations<br/>may lead to</li> </ul> |  |
|                                                                                                           | 2. Converter level                                                                                                                                 | 200 ms                           |                                                             | Simplified   | $\checkmark$ |                                                                                                                                                                                |  |
|                                                                                                           | Outer loop                                                                                                                                         | 1 sec                            |                                                             | $\checkmark$ | ✓            |                                                                                                                                                                                |  |
|                                                                                                           | 3. Plant level                                                                                                                                     | 10-20 sec                        |                                                             | √            | ✓            |                                                                                                                                                                                |  |
|                                                                                                           | 4. Plant to plant level                                                                                                                            | 10-20 sec                        |                                                             | $\checkmark$ | $\checkmark$ |                                                                                                                                                                                |  |
|                                                                                                           |                                                                                                                                                    | confusion across plants, control |                                                             |              |              |                                                                                                                                                                                |  |
|                                                                                                           | <ol> <li>Turbine level</li> <li>Normal</li> <li>Ride-thru torque control</li> <li>Ride-thru energy management</li> </ol>                           | 10s – 100s ms                    | Only models a<br>static output vs a<br>change in output     |              | <b>~</b>     | layers and/or<br>control modes                                                                                                                                                 |  |
|                                                                                                           | <ol> <li>Converter level</li> <li>Normal</li> <li>Under/over freq ride-thru</li> <li>Under/over voltage ride-thru</li> <li>SSCI damping</li> </ol> | 10 – 100s ms                     |                                                             |              | $\checkmark$ |                                                                                                                                                                                |  |




## Multi-Plant Voltage Control Coordination






### **Plant Level Control Interactions**

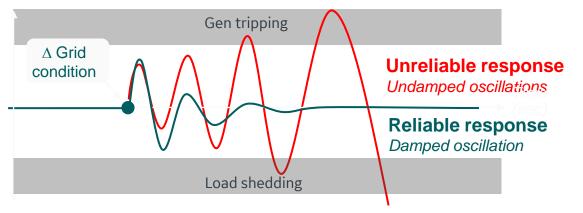


## Plant Level Control Interactions Solution: Voltage Droop

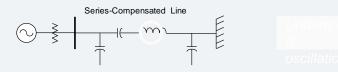




#### **Voltage Control with Droop**


Voltage Droop mitigates plant control interactions and improves voltage regulation quality




## Small signal stability: Change in grid condition can trigger power oscillations

#### Power oscillations grow in undamped systems

Power (MW)

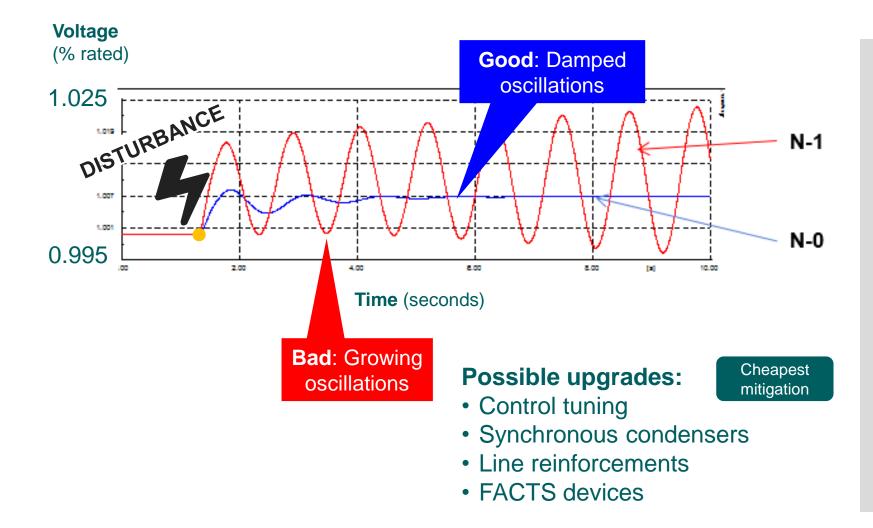


*Ex*: Sub-synchronous resonance (SSR) can break shafts



Western US: Long radial lines use series compensation to lower reactive losses



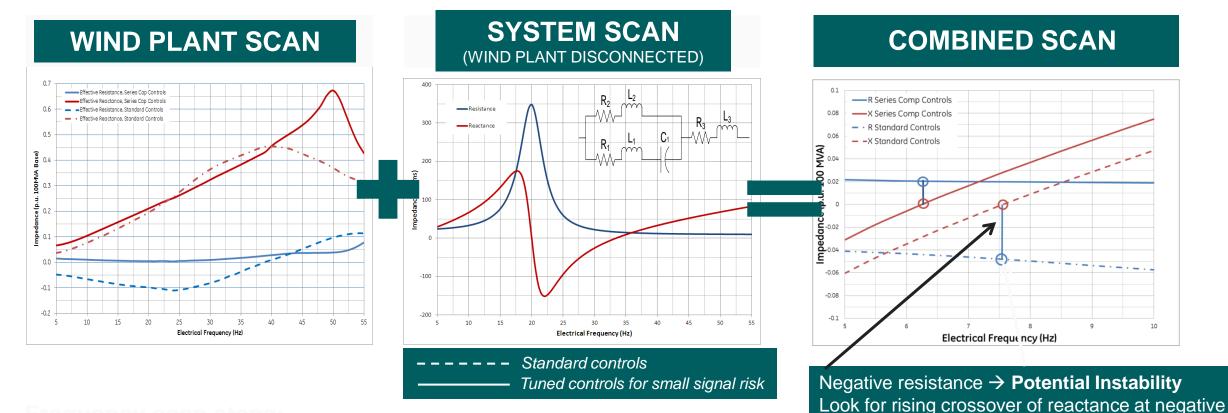

Mohave 1971: SSR breaks 1<sup>st</sup> GE generator shaft

#### New IBRs can trigger power oscillations ...

| IN GRIDS WITH                          | RESULT                                                                             | AFFECTS                         | FREQUENCY                   |      |
|----------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-----------------------------|------|
| IBRs w/high AC cable shunt capacitance | Shunt resonance                                                                    | IBRs                            | ~180 - 600Hz                | Fast |
| IBRs & HVDC<br>(unit and plant level)  | Controls interaction<br>(e.g. due to SSO, weak<br>grids, poorly tuned<br>controls) | IBRs, SMs                       | ~10 - 40 Hz<br>~ 0.1 - 1 Hz |      |
| Series capacitors                      | Sub-synchronous resonance (SSR)                                                    | Synchronous<br>machines<br>(SM) | ~ 10 - 40 Hz                |      |
| High speed exciters                    | Local mode power oscillation                                                       | SMs                             | ~ 3 Hz                      |      |
| Fast exciters/fast governor response   | Inter-area power<br>oscillation                                                    | SMs, IBRs                       | ~1 Hz                       | Slow |



## Texas example: Voltage may be N-0 stable but not N-1




#### **DISTURBANCE** @t = 1s

- Interaction between wind plant control layers may create unwanted voltage oscillations
- N-0 grid may be strong enough to damp out oscillations
- N-1 grid may not be strong enough and oscillations may grow and lead to unit tripping/ blackouts

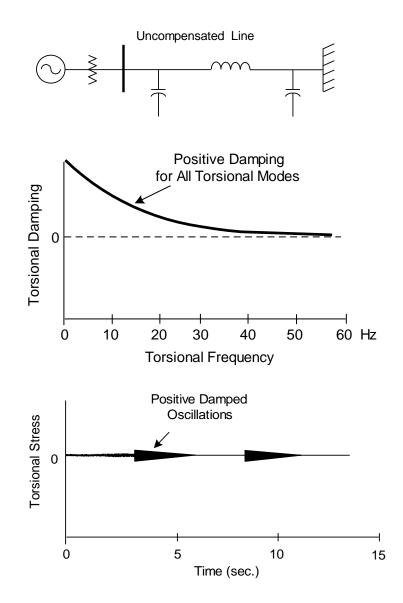
#### 🥵 ge vernova

## Frequency scan to screen for small signal stability risks



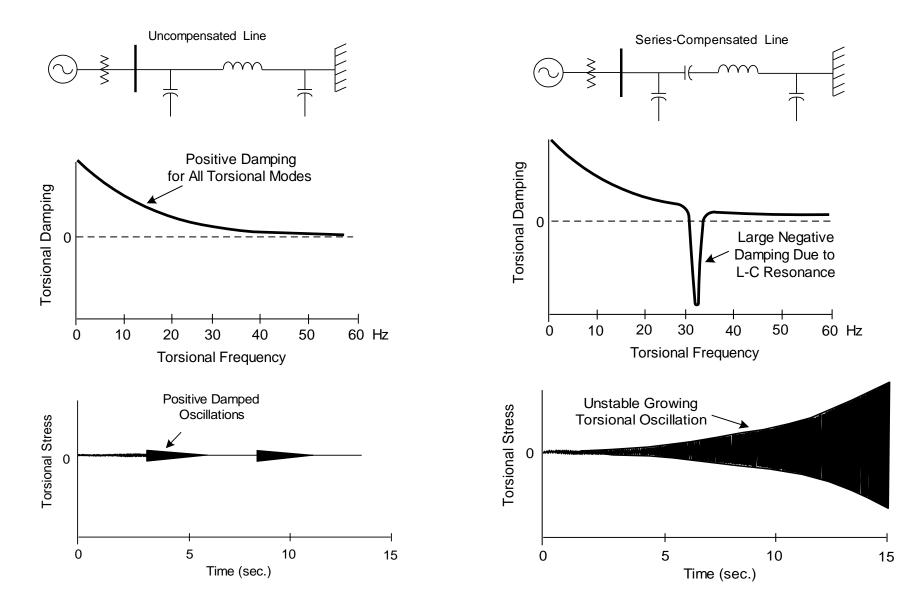
Frequency scan steps:

- 1. Determine equivalent impedances for wind plant & grid
- 2. Generate plot of total reactance and total resistance as a function of frequency.
- 3. Generate combined frequency scan by adding the effective resistance & reactance for the wind plant + system
- **4. Screen for frequencies with negative resistance**. For combined frequency scan plot, frequencies at which the resistance is negative and reactance is rising correspond to unstable oscillations.

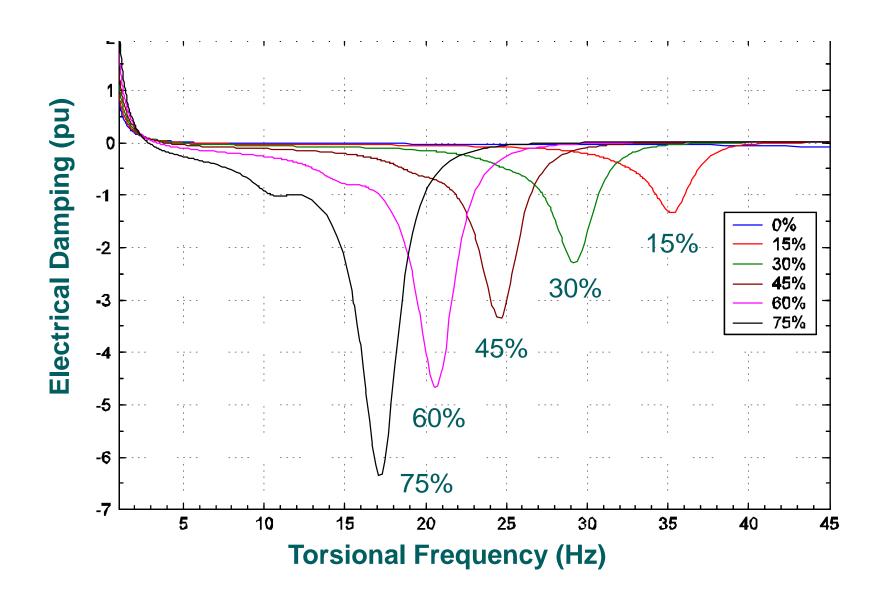

## Positive damping & Stable oscillation

resistance

- ✓ Tuned IBR controls
- ✓ Positive resistance

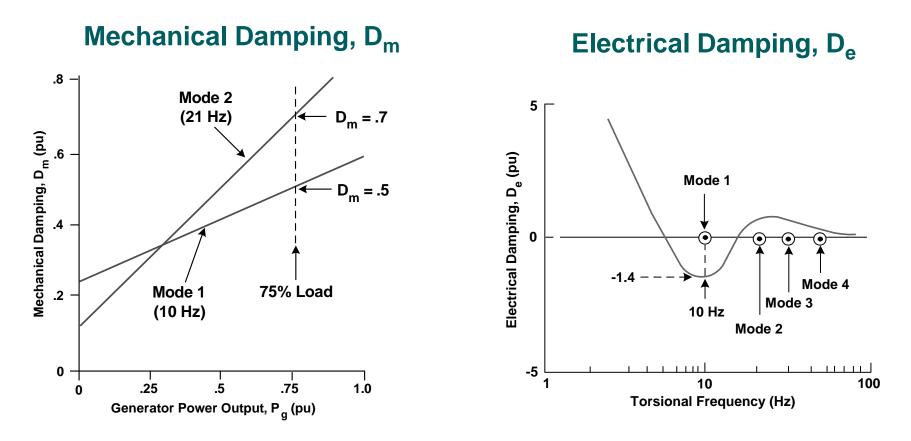

### Impact of Series Capacitors on Torsional Stress








#### **Impact of Series Capacitors on Torsional Stress**



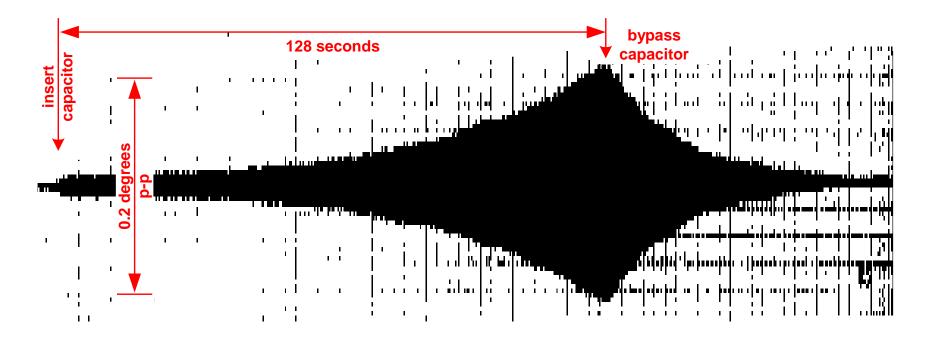

#### SSR Increases With % Compensation



## **Torsional Damping**






**Example:** 

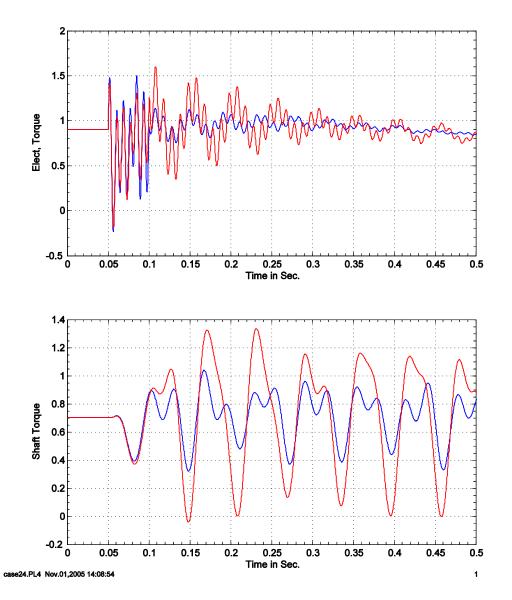
For 10 Hz Mode with  $P_g = .75 \text{ pu}$ ,  $D_m = 0.5 \text{ and } D_e = -1.4$  $D_{Total} = D_m + D_e = 0.5 - 1.4 = -0.9$  Unstable

## **SSR** Stability



Slow growing torsional oscillations over several seconds to minutes can eventually lead to shaft failure




Measured SSR Instability: series capacitor inserted and bypassed after 128 seconds.

Plot shows torsional angle displacement at the turbine end of shaft.

## **Transient Torque Amplification**



Xc = 0.35 (blue), 0.42 (red)



- ✓ Series capacitors can amplify shaft torques during transient
- ✓ Only when torsional and electrical resonance align
- ✓ Large transient torques cause high fatigue damage, even is system is torsionally stable
- ✓ High fatigue damage can occur in first few torsional cycles



### SSR Mitigation Hierarchy

Compensation Series Increasing

**SSR Blocking Filters** 

Passive SSR Bypass Filter on Series Capacitor Bank

**SVC-type SSR Damper at Generator Location\*** 

**Properly Tuned Thyristor-Controlled Series Capacitors in Transmission line\*** 

Supplementary Excitation Damping Control (SEDC) at Generator Location\*

**Topology/Power-Based Switching Schemes** 

**Avoid SSR with Low Level of Series Compensation** 

## SSR Mitigation Hierarchy



#### **Avoid SSR with Low Level of Series Compensation**

• Torsional relays to protect turbine-generators for contingencies

#### **Topology/Power-Based Switching Schemes**

- Bypass bank for critical contingency, or
- Bypass banks when units are lightly loaded, or
- Bypass a segment of a bank

### Supplementary Excitation Damping Control (SEDC)\*

- Applied to Generation Unit acting through excitation controller
- Increases torsional damping
- Limited by field time constant and exciter ceiling voltage
- Saturates during large transient events
- Effectiveness depends on control design, excitation type (e.g. static vs. brushless) and grid configuration/topology

\* Highly dependent on control design and grid configuration/topology

## SSR Mitigation Hierarchy, continued



#### SVC type SSR Damper\*

- Control of thyristor gating reduces destabilization and adds damping *IF PROPERLY TUNED FOR EVERY GRID CONFIGURATION*
- Performance is very sensitive to control design and grid configuration
- Must be retuned if grid configuration or topology changes
- Does not mitigate transient torque amplification
- VERY CHALLENGING: Improper tuning may destabilize torsional interaction locally

#### **Thyristor-Controlled Series Capacitors\***

- Control of thyristor gating reduces destabilization and adds damping *IF PROPERLY TUNED FOR EVERY GRID CONFIGURATION*
- Performance is very sensitive to control design and grid configuration
- Must be retuned if grid configuration or topology changes
- Does not mitigate transient torque amplification
- **VERY CHALLENGING:** Improper tuning may destabilize torsional interaction and can have a substantial grid-wide impact

## SSR Mitigation Hierarchy, continued



#### Passive SSR Bypass Filter on Series Capacitor Bank

- Detunes and damps resonance at subsynchronous frequencies
- Can eliminate both SSR stability and transient torque in some situations

#### **Passive SSR Blocking Filters**

- Located at generating station, in series with generator transformer
- Tuned to block current at complement of torsional frequencies of generating unit
  - One filter stage per torsional mode (severe SSR interactions require larger filters)
- Can mitigate both SSR stability and transient torque amplification
- Mitigation for a wide range of generation and transmission conditions
- Most effective method to mitigate torsional interaction with the grid at each plant





