TRANSNET BW

100% Renewables – The importance of System Design for System Integration

REFLECTIONS ON PLANNING A 75% RES SYSTEM IN GERMANY

ULRICH JANISCHKA, TRANSNETBW GMBH, GRID PLANNING London, ICESI Conference, 25th/26th March 2019

Company

AT THE HEART OF THE EUROPEAN TRANSMISSION GRID

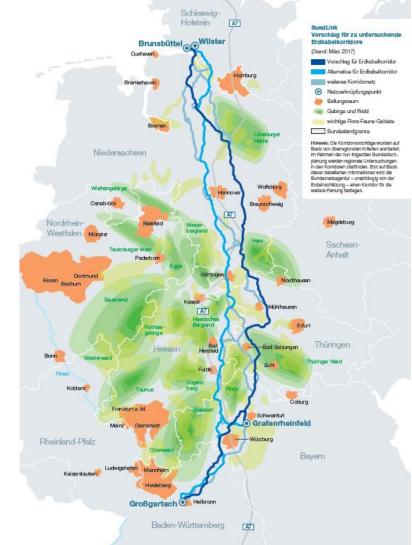
- / Headcount 600 (2018)
- / Revenues 6,1 billion EUR (fiscal 2016)
- / Certified Independent Transmission Operator (ITO)
- / Area served: 34,600km²
- / Total line length: 3,200 km (220 and 380kV)
- / 50 substations
- / Peak load in Baden-Wuerttemberg: 11 GW
 - in Germany: rd. 89 GW

in

/ Annual gross electricity consumptionBaden-Wuerttemberg: 74 TWh

in Germany:

rd. 570 TWh



TRĀNSNET BW

Energy transition and grid expansion

OUR CONTRIBUTION: SUEDLINK

- / Joint project TransnetBW/Tennet
- / Line corridor: from Brunsbuettel and Wilster to Grafenrheinfeld and Grossgartach
- / Provision by law: priority for underground cable
- / Length: will be determined when the final route is planned in detail
- / Nominal power: 2x2 GW
- / Voltage level: ±320 kV DC / ±525 kV DC
- Route corridor: proposed corridor was published on 7
 March, application was submitted on 17 March
- / One converter in Baden-Wuerttemberg, Grossgartach/Leingarten

100% Renewables – The importance of System Design for System Integration IT TAKES ABOUT 30 YEARS TO TRANSFORM A POLITICAL IDEA INTO POLITICAL MAINSTREAM...

1980

German Green Party Foundation-Program

Renewable sources must provide supply in the long run

100% of energy

2018

Revised European RES Directive

Renewables must make up **32%** of energy consumed **by 2030**

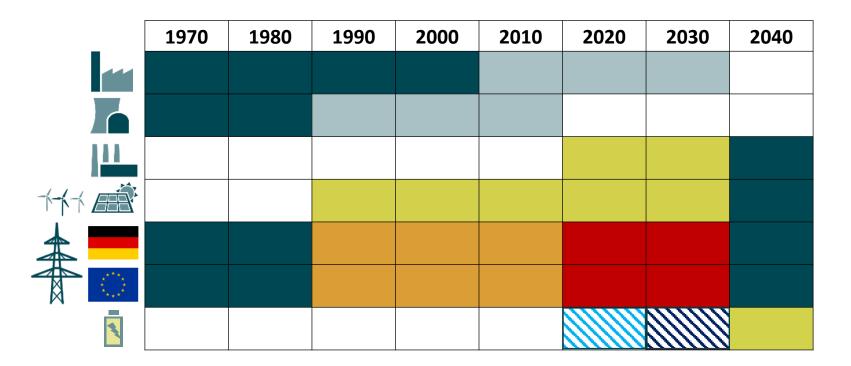
Agreement of the German Grand Coaltion

/ We aim for a share of **65%** renewables **by 2030**

...but how long does it take to transform the existing **Energy System Design**?

100% Renewables – The importance of System Design for System Integration SYSTEM DESIGNS GENERALLY DEPEND ON VERY SIMPLE GUIDING IDEAS OR MAIN MESSAGES

EURATOM TREATY 1957	MAASTRICHT TREATY 1993	"ICESI TREATY" 2019		
"To contribute to the raising of the standard of living	"To promote a harmonious and balanced development of	Target		
by	economic activities	U U		
creating the conditions	by			
necessary for a speedy growth of nuclear industries"	establishing a common market and implementing the common policies"	ΤοοΙ		
System design, infrastructure feature:	System design, responsibility feature:	System design: infrastructure feature responsibility feature		
Large (Nuclear) Power Plants +	Power Exchanges to maximize competition			
Weakly interconnected	+			
European electrical system	unbundled grid operators			



100% Renewables – The importance of System Design for System Integration THE STORY OF INNOVATION IS DRIVEN BY THE LACK OF **ACCEPTANCE FOR GRID EXTENSION** ...so let's give those renewables a little feed-in-tariff and we'll see! Ok, Fukushima... end of story. ...oh, maybe Please, that's too Phase out Nuclear dangerous... Build those Renewables instead Extend the Grid, but not in my backyard! Cars will be driven by Ok, Climate Change is bad. By the way: Do nothing, nuclear Please, just trade some energy! energy... Phase out Coal Step up those RES targets, NOW! We need more innovation, NOW!

1970	1980	1990	2000	2010	2020	2030	2040
------	------	------	------	------	------	------	------

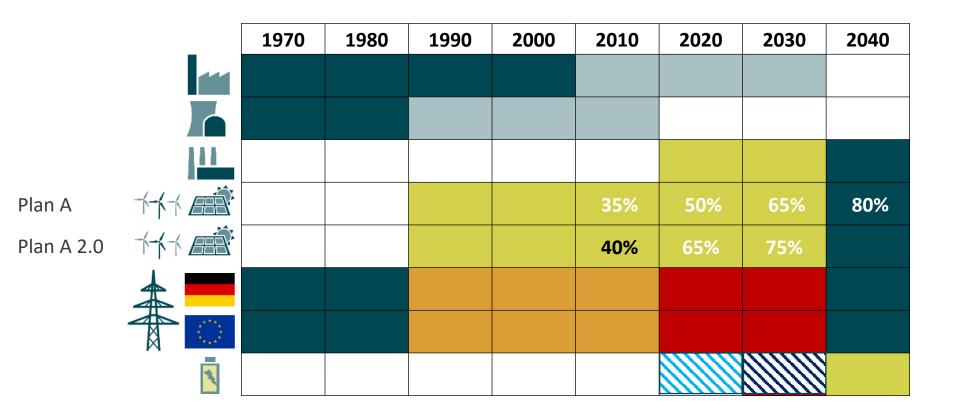
EXISTING SYTEMS CONSIST OF MULTIPLE, SOMETIMES CONFLICTING DESIGN FEATURES

in line with demand

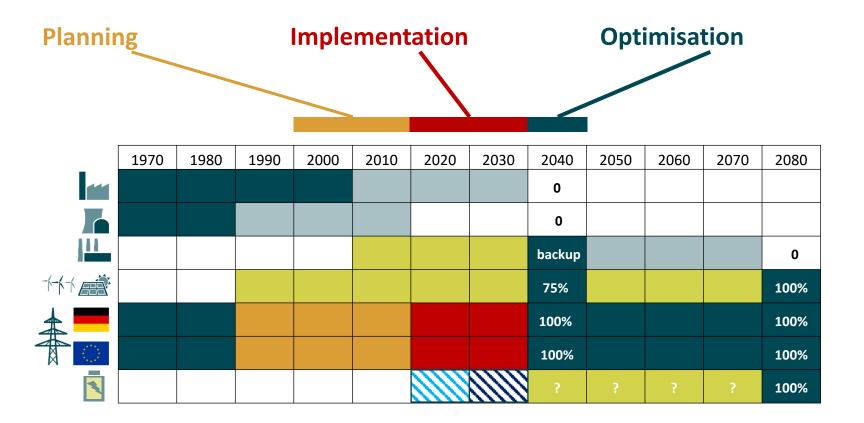
phasing out

rolling out

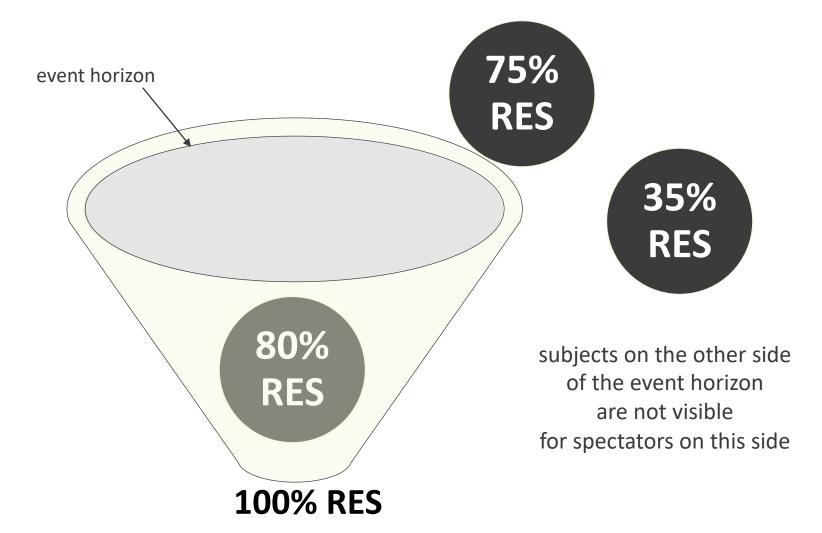
more intense utilization of existing capacitites


reconstruction/ extension

prototyping/ implementation

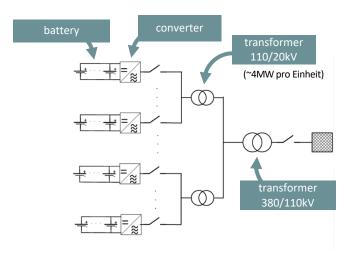


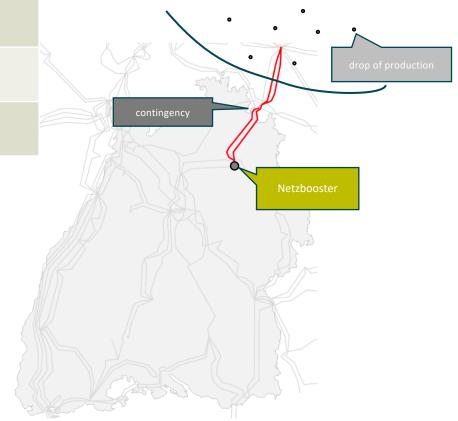
THE EARLIER YOU WANT TO ACHIEVE YOUR TARGET, THE HIGHER THE STRAIN IS FOR THE REST OF THE SYSTEM



EVEN PLANNING A SYSTEM BASED ON 75% RES IS HARD WORK AND TAKES A LONG TIME!

100% Renewables – The importance of System Design for System Integration YOU CAN'T "PLAN" INNOVATION


KPIS OF THE GERMAN GRID DEV. PLAN 2019


			75% RES			
				grid extensi	on* 11	.560 km
68	% RES			new DC lines		3.780 km
	Y / \		new	AC lines	1.030 km	
	203	85		strengthe	ening of ng lines	6.750 km
				costs	ing intes	0.730 km 52 bn €
2030	- 70%	CO_2		0313	* 2000	ording Scen. B2030
Ζυσυ	emissi	ions			acco	Juling Scell. B2030
- 60% CO ₂		\sim			power	energy
emissions			load & consumption			
emissions			Gross electricity co	onsumption		616 TWh
				Max Load	100 GW	
\bigcirc			Max Re	sidual Load	80 GW	
			Max DSM potential (indust	ry, housing)	6 GW	
Scenario C			new flexibility options		21,4 GW	28 TWh
Scenario C			power to Methane (p		3,0 GW	1,2 TWh
2030	installed capacity conv.	70 GW	power to Hydrogen (RES-sup	oply-driven)	-	7,8 TWh
	natural ga	s 34 GW	יסס	wer to Heat	16 GW	19 TWh
	coa	al 17 GW				
"revolutionary	pump storag	e 12 GW	coupling of energy sectors		58 GW	54 TWh
technologies"			•	nps (4 Mio.)	21 GW	29 TWh
teennologies	installed capacity RES	220 GW	electric vehicle	es (10 Mio.)	37 GW	25 TWh
		d 103 GW				
"quick transition	photovoltaic		batteries		12,4 GW	0,016 TWh
path"	biomass 5 GW			household)	10 GW	10 GWh
patri	wate	er 6 GW	>150kW	(balancing)	2,4 GW	6 GWh

PILOT: "NETZBOOSTER"

Capacity	500 MW
Operation	Reactive: After contingency (half- automated)
Technology (as of now)	Li-lonen battery, modular construction
Outllook	Additional benefits for example for reactive power supply

- / It takes around 40 years to transform simple political ideas into mainstrem
- / Energy system designs
 - / are based on very simple ideas (as politics)
 - / consist of two major design features: infrastructure and responsibility
- / A 100% RES system design needs to be developed
 - / without crashing the existing system
 - / without knowing the right technology mix
- / So you plan a 75% RES system and let some space for innovation...
 - / ...and you realize the 75% RES system until 2050!

Best gues:

The transformation of the energy system into 100% RES takes a 100 years after the first ideas of 1980!

DISCLAIMER: USE OF THIS PRESENTATION

Property rights/ Urheberrechte:

- / This presentation is protected by copyright. Duplication, dissemination or other use of this presentation is only allowed with explicit approval of TransnetBW GmbH
- / Diese Unterlage ist urheberrechtlich geschützt. Die Vervielfältigung, Weitergabe oder anderweitige Nutzung der Unterlage ist nur mit ausdrücklicher Zustimmung der TransnetBW GmbH gestattet.

Liability/ Haftung:

- / This presentation has been designed with due care. TransnetBW GmbH disclaims liability for curentness, correctness and completness of this presentation.
- / Diese Unterlage wurde mit großer Sorgfalt erstellt. Die TransnetBW GmbH übernimmt keine Haftung für Aktualität, Richtigkeit und Vollständigkeit der Unterlage.

TRANSNET BW

LOCATIONS

Company Headquarters Stuttgart Pariser Platz

Osloer Strasse 15 - 17 70173 Stuttgart Phone: +49 711 21858-0

Main Control Centre Wendlingen

Ohmstrasse 4 73240 Wendlingen Phone: +49 7024 44-0

transnetbw.de